【poj 2104】K-th Number【整体二分+树状数组】

转自zP1nG

传送门

Description

You are working for Macrohard company in data structures department. After failing your previous task about key insertion you were asked to write a new data structure that would be able to return quickly k-th order statistics in the array segment.
That is, given an array a[1…n] of different integer numbers, your program must answer a series of questions Q(i, j, k) in the form: “What would be the k-th number in a[i…j] segment, if this segment was sorted?”
For example, consider the array a = (1, 5, 2, 6, 3, 7, 4). Let the question be Q(2, 5, 3). The segment a[2…5] is (5, 2, 6, 3). If we sort this segment, we get (2, 3, 5, 6), the third number is 5, and therefore the answer to the question is 5.

Input

The first line of the input file contains n — the size of the array, and m — the number of questions to answer (1 <= n <= 100 000, 1 <= m <= 5 000).
The second line contains n different integer numbers not exceeding 109 by their absolute values — the array for which the answers should be given.
The following m lines contain question descriptions, each description consists of three numbers: i, j, and k (1 <= i <= j <= n, 1 <= k <= j - i + 1) and represents the question Q(i, j, k).

Output

For each question output the answer to it — the k-th number in sorted a[i…j] segment.

Sample Input

7 3
1 5 2 6 3 7 4
2 5 3
4 4 1
1 7 3

Sample Output

5
6
3

整体二分:

整体二分就是将所有询问一起二分,然后获得每个询问的答案。
整体二分的过程实质上是个按照数值来划分操作序列的过程。
对每一个询问我们都需要判定一下,以决定它被划分到哪一个答案的区间里。这个判定过程就是通过比较比二分的mid大的数的个数和k。
以下摘自许昊然论文-《浅谈数据结构题的几个非经典解法》

询问的答案具有二分性显然是前提。我们发现,因为修改判定标准的贡献相互独立,且贡献的值(如果有的话)与判定标准无关,所以如果我们已经计算过某一些修改对询问的贡献,那么这个贡献将永远不会改变,我们没有必要当判定标准改变时再次计算这些部分修改的贡献,只要记录下当前的总贡献,在进一步二分时,直接加上新的贡献即可。 

这样处理的复杂度可以不再与序列总长度直接相关了,而可以只与当前处理的序列的长度相关。

时间复杂度:

定义T(C,S)表示待二分区间长度为C,待二分序列长度为S,不妨设单次处理时间复杂度O(f(n)),则有

T(C,S)=T(C/2,S0+T(C/2,SS0))+O(f(s))

解之得
T(C,n)O(f(n)logC)

思路

首先考虑一次询问的情况,我们可以二分答案,然后通过验证比答案大的数有多少个来不断地缩小答案范围直至得到一个准确的答案。而对于多个询问我们同样可以这么做,只不过对每一个询问我们都需要判定一下,以决定它被划分到哪一个答案的区间里。这个判定过程就是通过比较比mid大的数的个数和k。同时如果比二分的mid大的数的个数小于k了,我们是要去寻找小的答案,那么这些比mid大的数在以后的递归里始终会对答案有贡献,所以我们没必要去做重复的工作,只需要把这些数的个数累积到贡献里,以后递归的时候就不用考虑这些数。我们可以把数列里的数也和询问一起递归,这样这些数也会被分到属于的答案区间里,并且只对相应区间里的询问有影响。
整体二分的过程实质上是个按照数值来划分操作序列的过程,于是复杂度也就和操作序列的长度线性相关,那么我们在中间维护一些信息的时候,就一定不能有和数列长线性相关的东西,否则会破坏其时间复杂度。
具体的复杂度证明请见2013年集训队XHR论文。

代码

#include <bits/stdc++.h>
#define lowbit(x) (x&(-x))
#define INF 0x3f3f3f3f
#define N 100005
#define M 5005
using namespace std;
int n,m,pos;
int Max=-INF,Min=INF;
int id[N],ans[N],tmp[N];
bool mark[N];
struct DATA{
    int x,v;
    bool operator < (const DATA&r)const{return v<r.v;}
}data[N];
struct Ques{
    int l,r,k;
}q[M];
int tree[N];
inline void add(int x,int num){
    while(x<=n){
        tree[x]+=num;
        x+=lowbit(x);
    }
}
inline int search(int x){
    int re=0;
    while(x){
        re+=tree[x];
        x-=lowbit(x);
    }
    return re;
}
void solve(int l,int r,int L,int R){
    if(l>r || L==R)     return;
    int mid=(L+R)>>1;
    while(data[pos+1].v<=mid && pos<n){
        add(data[pos+1].x,1);
        ++pos;
    }
    while(data[pos].v>mid){
        add(data[pos].x,-1);
        --pos;
    }
    int cnt=0;
    for(int i=l;i<=r;++i){
        if(search(q[id[i]].r)-search(q[id[i]].l-1)>q[id[i]].k-1){
            ans[id[i]]=mid;
            mark[i]=1;
            ++cnt;
        }
        else    mark[i]=0;
    }
    int l1=l,l2=l+cnt;
    for(int i=l;i<=r;++i){
        if(mark[i])     tmp[l1++]=id[i];
        else            tmp[l2++]=id[i];
    }
    for(int i=l;i<=r;++i)       id[i]=tmp[i];
    solve(l,l1-1,L,mid);
    solve(l1,l2-1,mid+1,R);
}
int main(){
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;++i){
        scanf("%d",&data[i].v);
        data[i].x=i;
        Max=max(Max,data[i].v);
        Min=min(Min,data[i].v);
    }
    sort(data+1,data+n+1);
    for(int i=1;i<=m;++i)       scanf("%d%d%d",&q[i].l,&q[i].r,&q[i].k);
    for(int i=1;i<=m;++i)       id[i]=i;
    solve(1,m,Min,Max+1);
    for(int i=1;i<=m;++i)       printf("%d\n",ans[i]);
    return 0;
}
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
智慧校园的建设目标是通过数据整合、全面共享,实现校园内教学、科研、管理、服务流程的数字化、信息化、智能化和多媒体化,以提高资源利用率和管理效率,确保校园安全。 智慧校园的建设思路包括构建统一支撑平台、建立完善管理体系、大数据辅助决策和建设校园智慧环境。通过云架构的数据中心与智慧的学习、办公环境,实现日常教学活动、资源建设情况、学业水平情况的全面统计和分析,为决策提供辅助。此外,智慧校园还涵盖了多媒体教学、智慧录播、电子图书馆、VR教室等多种教学模式,以及校园网络、智慧班牌、校园广播等教务管理功能,旨在提升教学品质和管理水平。 智慧校园的详细方案设计进一步细化了教学、教务、安防和运维等多个方面的应用。例如,在智慧教学领域,通过多媒体教学、智慧录播、电子图书馆等技术,实现教学资源的共享和教学模式的创新。在智慧教务方面,校园网络、考场监控、智慧班牌等系统为校园管理提供了便捷和高效。智慧安防系统包括视频监控、一键报警、阳光厨房等,确保校园安全。智慧运维则通过综合管理平台、设备管理、能效管理和资产管理,实现校园设施的智能化管理。 智慧校园的优势和价值体现在个性化互动的智慧教学、协同高效的校园管理、无处不在的校园学习、全面感知的校园环境和轻松便捷的校园生活等方面。通过智慧校园的建设,可以促进教育资源的均衡化,提高教育质量和管理效率,同时保障校园安全和提升师生的学习体验。 总之,智慧校园解决方案通过整合现代信息技术,如云计算、大数据、物联网和人工智能,为教育行业带来了革命性的变革。它不仅提高了教育的质量和效率,还为师生创造了一个更加安全、便捷和富有智慧的学习与生活环境。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值