bzoj1034: [ZJOI2008]泡泡堂BNB

Description

  第XXXX届NOI期间,为了加强各省选手之间的交流,组委会决定组织一场省际电子竞技大赛,每一个省的代表
队由n名选手组成,比赛的项目是老少咸宜的网络游戏泡泡堂。每一场比赛前,对阵双方的教练向组委会提交一份
参赛选手的名单,决定了选手上场的顺序,一经确定,不得修改。比赛中,双方的一号选手,二号选手……,n号
选手捉对厮杀,共进行n场比赛。每胜一场比赛得2分,平一场得1分,输一场不得分。最终将双方的单场得分相加
得出总分,总分高的队伍晋级(总分相同抽签决定)。作为浙江队的领队,你已经在事先将各省所有选手的泡泡堂水
平了解的一清二楚,并将其用一个实力值来衡量。为简化问题,我们假定选手在游戏中完全不受任何外界因素干扰
,即实力强的选手一定可以战胜实力弱的选手,而两个实力相同的选手一定会战平。由于完全不知道对手会使用何
种策略来确定出场顺序,所以所有的队伍都采取了这样一种策略,就是完全随机决定出场顺序。当然你不想这样不
明不白的进行比赛。你想事先了解一下在最好与最坏的情况下,浙江队最终分别能得到多少分。

Input

  输入的第一行为一个整数n,表示每支代表队的人数。接下来n行,每行一个整数,描述了n位浙江队的选手的
实力值。接下来n行,每行一个整数,描述了你的对手的n位选手的实力值。 20%的数据中,1<=n<=10; 40%的数
据中,1<=n<=100; 60%的数据中,1<=n<=1000; 100%的数据中,1<=n<=100000,且所有选手的实力值在0到100
00000之间。

Output

  包括两个用空格隔开的整数,分别表示浙江队在最好与最坏的情况下分别能得多少分。不要在行末输出多余的
空白字符。

Sample Input

2
1
3
2
4

Sample Output

2 0

样例说明

这里写图片描述

思路

这道题就是田忌赛马,策略很简单,如果当前最差的能比对方当前最差的强,就让当前最差的与对方最差的比(显然当前已经是最差的了,在能战胜对方最差的前提下,肯定是出动己方越差的越好);如果不满足,则比较当前最强的和对方最强的,如果比对方强则直接对比。
  如果都不满足,就考虑用己方最差的直接与对方最强的比,这显然是可行的,反正己方对上对方最强的都不能胜利,那么还不如用自己最差的去换掉对方最强的。
  这是最优策略,最坏策略就是以对方为主动,跑一遍最优策略,然后用2×n-ans即可得到最差策略。

代码

#include <cstdio>
#include <algorithm>
using namespace std;
int n,a[100005],b[100005];
int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;++i)scanf("%d",&a[i]);
    for(int i=1;i<=n;++i)scanf("%d",&b[i]);
    sort(a+1,a+n+1);
    sort(b+1,b+n+1);
    int l1=1,l2=1,l3=1,l4=1,r1=n,r2=n,r3=n,r4=n;
    int ans1=0,ans2=0;
    while(l1<=r1&&l2<=r2&&l3<=r3&&l4<=r4){
        if(a[l1]>b[l2])ans1+=2,++l1,++l2;
        else if(a[r1]>b[r2])ans1+=2,--r1,--r2;
        else ans1+=(a[l1]==b[r2]),--r2,++l1;
        if(b[l3]>a[l4])ans2+=2,++l3,++l4;
        else if(b[r3]>a[r4])ans2+=2,--r3,--r4;
        else ans2+=(b[l3]==a[r4]),--r4,++l3;
    }
    printf("%d %d",ans1,(n<<1)-ans2);
    return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值