外卖大数据案例

文章介绍了在Hadoop、Hive、Spark和HBase环境中处理外卖平台SPU数据的过程,包括数据上传、使用Spark进行数据分析(如店铺商品统计、销售额计算和排序),以及将结果存储到HBase中进行后续查询的操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、环境要求 Hadoop+Hive+Spark+HBase 开发环境。

二、数据描述

meituan_waimai_meishi.csv 是某外卖平台的部分外卖 SPU(Standard Product Unit , 标准产品单元)数据,包含了外卖平台某地区一时间的外卖信息。具体字段说明如下:

字段名称

中文名称

数据类型

spu_id

商品spuID

String

shop_id

店铺ID

String

shop_name

店铺名称

String

category_name

类别名称

String

spu_name

SPU名称

String

spu_price

SPU商品售价

Double

spu_originprice

SPU商品原价

Double

month_sales

月销售量

Int

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值