OpenCV 图形API(35)图像滤波-----中值模糊函数medianBlur()

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

使用中值滤波器模糊图像。

该函数使用带有 ksize×ksize 开口的中值滤波器来平滑图像。多通道图像的每个通道都是独立处理的。输出图像必须与输入图像具有相同的类型、大小和通道数。

cv::gapi::medianBlur 是 OpenCV G-API 模块中提供的一个函数,用于对图像应用中值模糊(Median Blur)。中值模糊是一种非线性滤波技术,常用于减少图像中的噪声。与均值滤波器不同,中值滤波器在处理每个像素时会考虑其邻域内的所有像素值,并将中心像素的值替换为这些值的中位数,这样可以在一定程度上去除椒盐噪声而不平滑边缘。

注意:
如果硬件支持,会进行向最近偶数的舍入,如果不支持,则向最近的整数舍入。中值滤波器内部使用 cv::BORDER_REPLICATE 来处理边界像素,请参阅 cv::BorderTypes。
函数的文字ID是 “org.opencv.imgproc.filters.medianBlur”。

函数原型

GMat cv::gapi::medianBlur 	
(
 	const GMat &  	src,
	int  	ksize 
) 	

参数

  • 参数src: 输入矩阵(图像)
  • 参数 ksize: 开口的线性尺寸;它必须是奇数并且大于1,例如:3, 5, 7…

代码示例

#include <opencv2/opencv.hpp>
#include <opencv2/gapi/imgproc.hpp> // 确保包含正确的头文件
#include <opencv2/gapi/core.hpp>
#include <opencv2/gapi.hpp>
#include <opencv2/gapi/cpu/gcpukernel.hpp> // 引入CPU kernels

int main()
{
    // 读取输入图像
    cv::Mat img = cv::imread("/media/dingxin/data/study/OpenCV/sources/images/Lenna.png");

    if (img.empty()) {
        std::cerr << "Could not open or find the image!\n";
        return -1;
    }

    // 创建G-API网络
    cv::GMat in;
    auto out = cv::gapi::medianBlur(in, 5); // 应用5x5的中值模糊

    cv::GComputation comp(cv::GIn(in), cv::GOut(out));

    // 运行计算图,使用CPU kernels作为后端
    cv::Mat result;
    comp.apply(img, result, cv::compile_args( cv::gapi::kernels() )  );

    // 显示结果
    cv::imshow("Original Image", img);
    cv::imshow("Median Blur Result", result);
    cv::waitKey(0);

    return 0;
}

运行结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

村北头的码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值