经验模态分解( empirical mode decomposition,EMD)——介绍

1、EMD介绍

        EMD是一种适用于处理非平稳非线性序列的自适应的时空分析方法。EMD进行了操作,将一个序列分成数个“模态”(IMFs, 本征模态函数)而不偏离时间域。这可以与一些时空分析方法,如傅里叶变换和小波分解,相比拟。与这些方法类似,EMD并不基于物理(原理)。相反,这些模态可能提供了在这些数据中包含了众多的信号。这个方法尤其适用于分析自然信号,而自然信号通常是非线性和非平稳的。
        EMD过滤出的函数,组成了一个关于原始信号完整的,且几乎正交的基础的函数。因此,这些被称为“内在模式函数”(IMF)的函数,即使它们不一定是正交的,也足以描述信号。其原因Huang et al等人在Royal Society Proceedings on Math, Physical, and Engineering Sciences中有所描述:“…这里的真正含义仅适用于局部。对于某些特殊数据,相邻的分量当然可以在不同的持续时间内具有相同频率的数据部分。但对于所有实际情况,任何两个分量在局部应该是正交的”。
        信号分解的函数都在时间域内, 并且与原始信号的长度相同, 可以保留不同频率。因为自然过程通常有多种原因,并且每种原因都可能在特定的时间间隔内发生,所以从现实世界信号中获取IMF非常重要。这种类型的数据在EMD分析中很明显,但在傅里叶域或小波系数中被完全隐藏。

2、适用范围

        基于EMD的时频分析方法既适合于非线性、非平稳信号的分析,也适合于线性、平稳信号的分析,并且对于线性、平稳信号的分析也比其他的时频分析方法更好地反映了信号的物理意义。

3、基本原理

        经验模态分解(EMD)方法的实质是通过特征时间尺度来识别信号中所内含的所有振动模态( Intrinsic Oscillatory Mode)。在这一过程中,特征时间尺度及IMF的定义都具有一定的经验性和近似性。与其他信号处理方法相比,EMD方法是直观的、间接的、后验的、自适应的,其分解所用的特征时间尺度是源自于原始信号的。
        EMD分解方法是基于以下假设条件:

  1. 数据至少有两个极值,一个最大值和一个最小值;
  2. 数据的局部时域特性是由极值点间的时间尺度唯一确定;
  3. 如果数据没有极值点但有拐点,则可以通过对数据微分一次或多次求得极值,然后再通过积分来获得分解结果。这种方法的本质是通过数据的特征时间尺度来获得本征波动模式,然后分解数据。这种分解过程可以形象地称之为“筛选(sifting)”过程。

4、分解过程

  1. 找到信号x(t)所有的极值点
  2. 用3次样条曲线拟合出上下极值点的包络线emax(t)和emin(t),并求出上下包络线的平均值m(t),在x(t)中减去它:
    在这里插入图片描述
  3. 根据预设判据判断h(t)是否为IMF,判断条件是:
    (1)函数在整个时间范围内,局部极值点和过零点的数目必须相等,或最多相差一个
    (2)在任意时刻点,局部最大值的包络(上包络线)和局部最小值的包络(下包络线) 平均必须为零。
  4. 如果不是,则以h(t)代替x(t),重复以上步骤直到h(t)满足判据,则h(t)就是需要提取的 IMF
  5. 每得到一阶IMF,就从原信号中扣除它,重复以上步骤;直到信号最后剩余部分rn就只是单调序列或者常值序列。
    这样,经过EMD方法分解就将原始信号x(t)分解成一系列IMF以及剩余部分的线性叠加:
    在这里插入图片描述

5、总结

优点

        从EMD理论的介绍可以看出,EMD的目的是将组成原始信号的各尺度分量不断从高频到低频进行提取,则分解得到的特征模态函数顺序是按频率由高到低进行排列的,即首先得到最高频的分量,然后是次高频的,最终得到一个频率接近为0的残余分量。而针对不断进行分解的信号而言,能量大的高频分量总是代表了原信号的主要特性,是最主要的组成分量,所以EMD方法是一种将信号的主要分量先提取出来,然后再提取其他低频部分分量的一种新的主成分分析方法。
        EMD方法的基本思想是把信号分解成一组单分量信号IMF的组合,再对各分量进行希尔伯特变换,得到瞬时特征量,并将这些瞬时特征量变换到时一频平面形成希尔伯特谱。实际上,EMD方法等价于定义了一组含有自适应分解特性的广义基,从传统基函数定义角度来看,EMD所定义的自适应广义基在信号处理领域属于对基函数的一种创新。这种基函数不是事先预定或强制给定的,而是依赖信号本身,只和信号本质特征有关,能根据分解过程中信号的特征而自适应发生改变,故EMD方法具有自适应时频分析的特征。
        EMD方法的数学基础和核心是希尔伯特变换,而希尔伯特变换的主要目的是得到单分量信号的瞬时频率,强调信号的局部瞬时特性,彻底避免了传统傅里叶变换利用已知频率分量拟合原序列而产生虚假频率谐波的现象。
        EMD方法将信号分解成有限个IMF的单分量信号组合,定义了信号瞬时频率的物理实体。与传统时频分析方法的频率定义方式完全不同,利用相位导数求取频率的经典定义方法,对信号不同频率成分分量的瞬时频率进行了精确的描述和表达。所以,EMD方法对时变非线性非平稳信号也具有很好的分析效果,具有有效的局瞬特性表征能力。
        普通的EMD一般常用于处理一维的信号分解,对于二维及其以上建议考虑采用MEMD方法分解。

6、参考资料

  1. 林玉池主编.测量控制与仪器仪表前沿技术及发展趋势:天津大学出版社,2008.12:第167页
  2. 徐佳,麻凤海著,希尔伯特.变换理论及其在重大工程变形监测中的应用:煤炭工业出版社,2013.07:第20页
  3. 杨永锋,吴亚锋著.经验模态分解在振动分析中的应用:国防工业出版社,2013.11:第8页
  4. 英文EMD介绍 https://www.clear.rice.edu/elec301/Projects02/empiricalMode/app.html
    中文翻译 https://www.cnblogs.com/jiangleads/p/9462087.html
经验模态分解Empirical Mode DecompositionEMD)在迭代过程中常常会出现两个问题:端点效应和模态混叠现象。 1. 端点效应(Endpoint Effect):EMD 在信号的两个端点处存在一种尖锐的跳跃现象,这会导致分解的结果受到边界效应的影响。这是因为在计算局部极大值和极小值时,信号在两端没有足够的数据点进行计算,导致出现误差。 解决端点效应的方法包括: - 边界扩展:通过在信号两端复制边界数据或使用对称扩展等方法来增加边界处的数据点数量,以减轻端点效应。 - 包络函数插值:通过对信号的边界进行插值操作,生成有效的边界数据,从而减少端点效应。 2. 模态混叠现象(Mode Mixing):EMD 的另一个常见问题是模态混叠,即两个或多个模态函数在频域上相互重叠,导致模态函数提取不准确。这是由于局部极大值和极小值的选择不唯一以及噪声的干扰。 解决模态混叠的方法包括: - 后处理方法:应用滤波器、小波变换或其他信号处理技术对模态函数进行后处理,以减少模态混叠的影响。 - 前置处理方法:在进行EMD之前,可以对信号进行预处理,如降噪、滤波等操作,以减少噪声对EMD的影响。 请注意,端点效应和模态混叠是EMD方法的固有问题,具体解决方法可能因具体情况而异。此外,还有一些改进的EMD变体,如快速EMD(Fast EMD)和稳定EMD(S-EMD),可以在一定程度上缓解这些问题。在实际应用中,根据具体情况选择合适的方法和技术来解决这些问题是很重要的。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值