【fraud detection】从“秒杀门”看网络防作弊

从“秒杀门”看网络防作弊

前段时间淘宝的“秒杀门”闹得沸沸扬扬。用郭德纲的话来说,“秒杀门”给淘宝带来了一个好消息和一个坏消息。好消息是这个活动真的引起了大量人的关注;坏消息是这些关注几乎100%是负面的……作为一个典型的“营销事件”,引起骂声一片本也不是完全的失败,有时要比什么声音都没有好,但那是对于某些想要一夜成名的小品牌(当年的奇虎就是这样成功的),但对于淘宝来说,品牌知名度应该不是他们这次活动的诉求,更强的个购物体验、口碑传播和品牌美誉才是他们想要的东西——那么这就是一次彻底的失败了。

“秒杀门”的失败案例,将一个新的名词拉到了互动营销行业的前台——网络防作弊。这里我先要解释一下题目中【VE】的含义,VE是Virtual Event(虚拟活动)的缩写。随着网络营销的普及和广告主对ROI空前的重视,原来的评选、颁奖活动都开始纷纷向网络平台移植,基于互联网平台进行的线下活动模拟和传播,统称为Virtual Event。现在这种传播方式已经广泛用于产品发布、评奖、汽车的试驾体验等方面,而且由于活动具有很大的策划空间,因此跟口碑传播、直复营销等新媒体又有很强的对接性。淘宝的“秒杀”活动就是一个非常成功的Virtual Event策划,但这个好的策划却在执行阶段出了重大问题——没有对网络作弊进行足够的重视和防范。

做互动营销的人都清楚,品牌希望活动有吸引力,对于用户具有强刺激,这样才能激发用户的互动行为。但强烈的互动愿望伴随而来的就是破坏规则的作弊愿望,这种愿望同样强烈,越是成功的活动策划,越容易遇到这种问题。

网络作弊的主要方式有三种:

1、利用重复注册、刷票等形式赢得物质和精神奖励。这种方式主要出现在一些选秀和评奖类的活动里。

2、注册虚假信息。这种方式主要用在一些作品比赛和网络选秀的活动中。

3、恶意攻击。恶意攻击可能出现在任何的虚拟活动里,越是大的品牌,越需要防范恶意攻击。

针对这些作弊方式,我们现在的应对方法却比较有限,而大多数企业也不是太重视网络作弊的问题,大多数企业在做虚拟活动营销时都没有这块预算。目前通行的网络防作弊方法主要从三个层面入手:

1、法律层面:在活动页面中,明确作弊的界定和惩罚方法,并通过追究法律责任来限制一些恶劣的作弊行为。可以设计举报机制,让网民互相监督和举报,以增强对不法分子的威慑力。

2、技术层面:采用CDN及各种、IP监控技术和代码过滤机制来防止各种人工和软件的作弊形式。例如投票监测,除了可以检测投票人的、IP之外,还可以检测鼠标点击坐标和进行投票IP和访问IP比对,以此分辨是人工投票还是软件虚拟投票。

3、流程层面:完善和严谨的活动流程是防作弊中必不可少的。我们常见的有认证机制、唯一码机制等。此外,在活动策划上,也应当尽量将作弊的情境应对考虑进去,例如奖品设置和评选计分制度上,应当考虑排名与抽奖相结合,网络投票与专家评审相结合。

当然,这些方法在应对层出不穷的网络作弊时,还是远远不够的。随着营销手段的不断创新,作弊手段也会随着更新。例如淘宝“秒杀门”中,淘宝在进行人工抢拍和模拟抢拍的问题上,缺少鉴别能力。同时其商品发布系统也很可能受到黑客的侵入(也许是内部人员),致使这些人可以在第一时间打开秒杀商品的链接。

从市场前景来看,互联网防作弊的服务很可能首先从4A公司开始推出,因为他们服务的都是大客户,这些客户重视美誉度和品牌安全,同时也只有4A公司具备如此强的溢价能力来提供这种服务。随着虚拟活动的营销模式越来越受到广告主的重视,相信网络防作弊将成为一种新的营销辅助产品,出现在越来越多广告公司的报价单中。

博客原文http://blog.sina.com.cn/s/blog_62b2eeb10100fkiv.html

IEEE-CIS Fraud Detection is a Kaggle competition that challenges participants to detect fraudulent transactions using machine learning techniques. KNN (k-Nearest Neighbors) is one of the machine learning algorithms that can be used to solve this problem. KNN is a non-parametric algorithm that classifies new data points based on the majority class of their k-nearest neighbors in the training data. In the context of fraud detection, KNN can be used to classify transactions as either fraudulent or not based on the similarity of their features to those in the training data. To implement KNN for fraud detection, one can follow the following steps: 1. Preprocess the data: This involves cleaning and transforming the data into a format that the algorithm can work with. 2. Split the data: Split the data into training and testing sets. The training data is used to train the KNN model, and the testing data is used to evaluate its performance. 3. Choose the value of k: This is the number of neighbors to consider when classifying a new data point. The optimal value of k can be determined using cross-validation. 4. Train the model: Train the KNN model on the training data. 5. Test the model: Test the performance of the model on the testing data. 6. Tune the model: Fine-tune the model by changing the hyperparameters such as the distance metric used or the weighting function. Overall, KNN can be a useful algorithm for fraud detection, but its performance depends heavily on the quality of the data and the choice of hyperparameters.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值