2025CSP-J 冲刺训练(3):前缀和差分

一、基础知识

1. 前缀和

前缀和(又叫积分):在一个数字组成的序列中从位置 1 1 1 到位置 n n n 这个区间内的所有数字之和。

例如:

a i \tt a_i ai 1 2 3 4 5 6 7 8
p f x i \tt pfx_i pfxi 1 3 6 10 15 21 28 36

前缀和可以大大提高查询区间和的时间复杂度。如果按照普通的 for 循环,时间复杂度为 O ( r − l + 1 ) O(r-l+1) O(rl+1),使用前缀和后套用公式 p f x r − p f x l − 1 \tt pfx_r-pfx_{l-1} pfxrpfxl1,就可以直接用 O ( 1 ) O(1) O(1) 的时间复杂度获得答案。

2. 差分

差分:求相邻两个元素的差值并存储,也是前缀和的逆运算。

例如:

a i \tt a_i ai 1 3 6 10 15 21 28 36
d i f f i \tt diff_i diffi 1 2 3 4 5 6 7 8

3. 公式

3.1 一维

3.2 二维

二维前缀和 p f x i , j = p f x i − 1 , j + p f x i , j − 1 − p f x i − 1 , j − 1 + a i , j \tt pfx_{i,j}=pfx_{i-1,j}+pfx_{i,j-1}-pfx_{i-1,j-1}+a_{i,j} pfxi,j=pfxi1,j+pfxi,j1pfxi1,j1+ai,j
二维区间和 p f x x 2 , y 2 − p f x x 1 − 1 , y 2 − p f x x 2 , y 1 − 1 + p f x x 1 − 1 , y 1 − 1 \tt pfx_{x_2,y_2}-pfx_{x_1-1,y_2}-pfx_{x_2,y_1-1}+pfx_{x_1-1,y_1-1} pfxx2,y2pfxx11,y2pfxx2,y11+pfxx11,y11


二维差分区间范围统一+1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值