2025CSP-J 冲刺训练 3
一、基础知识
1. 前缀和
前缀和(又叫积分):在一个数字组成的序列中从位置 1 1 1 到位置 n n n 这个区间内的所有数字之和。
例如:
a i \tt a_i ai | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
p f x i \tt pfx_i pfxi | 1 | 3 | 6 | 10 | 15 | 21 | 28 | 36 |
前缀和可以大大提高查询区间和的时间复杂度。如果按照普通的 for
循环,时间复杂度为 O ( r − l + 1 ) O(r-l+1) O(r−l+1),使用前缀和后套用公式 p f x r − p f x l − 1 \tt pfx_r-pfx_{l-1} pfxr−pfxl−1,就可以直接用 O ( 1 ) O(1) O(1) 的时间复杂度获得答案。
2. 差分
差分:求相邻两个元素的差值并存储,也是前缀和的逆运算。
例如:
a i \tt a_i ai | 1 | 3 | 6 | 10 | 15 | 21 | 28 | 36 |
---|---|---|---|---|---|---|---|---|
d i f f i \tt diff_i diffi | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
3. 公式
3.1 一维
3.2 二维
二维前缀和: p f x i , j = p f x i − 1 , j + p f x i , j − 1 − p f x i − 1 , j − 1 + a i , j \tt pfx_{i,j}=pfx_{i-1,j}+pfx_{i,j-1}-pfx_{i-1,j-1}+a_{i,j} pfxi,j=pfxi−1,j+pfxi,j−1−pfxi−1,j−1+ai,j
二维区间和: p f x x 2 , y 2 − p f x x 1 − 1 , y 2 − p f x x 2 , y 1 − 1 + p f x x 1 − 1 , y 1 − 1 \tt pfx_{x_2,y_2}-pfx_{x_1-1,y_2}-pfx_{x_2,y_1-1}+pfx_{x_1-1,y_1-1} pfxx2,y2−pfxx1−1,y2−pfxx2,y1−1+pfxx1−1,y1−1
二维差分区间范围统一+1: