Python 分类算法(1)——逻辑回归logistic regression之代码实现(2)

该博客介绍了如何使用Python的sklearn库实现逻辑回归分类,通过上一节的基础,本节直接调用sklearn的逻辑回归函数,结合上节数据进行分类,并展示了利用contourf绘制的分类分隔线效果。
摘要由CSDN通过智能技术生成

在上一节中,根据逻辑回归的原理,利用python编写了实现线性分类的代码。

Python 分类算法(1)——逻辑回归logistic regression之代码实现(1)

本节中,直接调用sklearn中的逻辑回归函数,还是利用上节中的数据,完成数据分类。

import numpy as np
import pandas as pd
scatterdata=pd.read_csv("C:/Users/Ray/Desktop/logistic regression/data3.csv",header=None)#
# scatterdata.head()
data=np.array(scatterdata)
# print(data[:,1])
x=data[:,0:2]
y=data[:,2]
# print(x.shape)

调用sklearn中的逻辑回归函数

from sklearn.linear_model import LogisticRegression
from sklearn import metrics
logmodel=LogisticRegression()
logmodel.fit(x,y)
y_pre=logmodel.predict(x)
from sklearn.metrics import confusion_matrix
import seaborn as sns
import ma
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值