在上一节中,根据逻辑回归的原理,利用python编写了实现线性分类的代码。
Python 分类算法(1)——逻辑回归logistic regression之代码实现(1)
本节中,直接调用sklearn中的逻辑回归函数,还是利用上节中的数据,完成数据分类。
import numpy as np
import pandas as pd
scatterdata=pd.read_csv("C:/Users/Ray/Desktop/logistic regression/data3.csv",header=None)#
# scatterdata.head()
data=np.array(scatterdata)
# print(data[:,1])
x=data[:,0:2]
y=data[:,2]
# print(x.shape)
调用sklearn中的逻辑回归函数
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
logmodel=LogisticRegression()
logmodel.fit(x,y)
y_pre=logmodel.predict(x)
from sklearn.metrics import confusion_matrix
import seaborn as sns
import ma