1、推荐系统的发展历史
1994年,美国明尼苏达大学的GroupLens研究组推出了GroupLens系统,该系统首次提出了基于协同过滤来进行推荐的思想,并将推荐问题建立了一个形式化的模型。该推荐系统模型引领了推荐系统今后十几年的发展。GroupLens所提出的推荐系统就是目前基于用户的协同过滤推荐算法(user-based collaboration filtering algorithms)。在此之后,基于物品的协同过滤算法(item-based collaborative filtering algorithms),基于矩阵分解的协同过滤算法(SVD-based/NMF-based)等算法逐渐被提出。
2、推荐系统的输入数据
推荐系统的输入数据可以归纳为用户(user)、物品(item)和评价(review)三个层面。
(1)物品(item)
用来描述一个物品的性质,也被称为item profile。比如对于图书推荐,item profile可以包括图书类别、作者、出版社、出版时间等;对于新闻推荐,item profile可以包括新闻文本内容、关键词、时间等。
(2)用户(user)
用来描述一个用户的“个性”,即user profile,例如用户的性别、年龄,年收入等。