推荐系统

本文介绍了推荐系统的发展历程,从基于协同过滤的GroupLens系统开始,探讨了推荐系统的输入数据,包括用户、物品和评价。接着,阐述了推荐系统的输出——推荐列表和推荐理由,以及推荐系统面临的预测和推荐两大核心问题。文章还介绍了推荐方法的分类,如大众推荐、个性化推荐、基于内容和协同过滤的推荐等,并概述了典型推荐算法,如基于人口统计学、内容和协同过滤的推荐。最后,讨论了推荐系统的评价指标,如准确度和可用性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、推荐系统的发展历史

    1994年,美国明尼苏达大学的GroupLens研究组推出了GroupLens系统,该系统首次提出了基于协同过滤来进行推荐的思想,并将推荐问题建立了一个形式化的模型。该推荐系统模型引领了推荐系统今后十几年的发展。GroupLens所提出的推荐系统就是目前基于用户的协同过滤推荐算法(user-based  collaboration filtering algorithms)。在此之后,基于物品的协同过滤算法(item-based collaborative filtering algorithms),基于矩阵分解的协同过滤算法(SVD-based/NMF-based)等算法逐渐被提出。


2、推荐系统的输入数据

    推荐系统的输入数据可以归纳为用户(user)、物品(item)和评价(review)三个层面。

    (1)物品(item)

    用来描述一个物品的性质,也被称为item profile。比如对于图书推荐,item profile可以包括图书类别、作者、出版社、出版时间等;对于新闻推荐,item profile可以包括新闻文本内容、关键词、时间等。


    (2)用户(user)

    用来描述一个用户的“个性”,即user profile,例如用户的性别、年龄,年收入等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值