用kaggle深度学习 踩坑

本文记录了在Kaggle平台进行数据科学项目时遇到的常见问题,包括:1) 数据集上传与编辑限制;2) pip安装特定版本库的注意事项;3) 文件路径管理;4) TensorFlow版本问题与解决方案;5) notebook运行变量的清除;6) 处理长时间运行作业的方法。此外,还补充了Kaggle系统的只读特性及其应对策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

kaggle踩坑实录:

kaggle有免费的GPU资源(每周30小时),入门版教程见这里

坑:

1.每次上传dataset都要上传rar文件,且上传后无法编辑修改源文件,想修改只能再次完整上传。

2.注意用pip安装其他版本的软件包时(如scipy由1.7.1到1.2.1).应先安装包再查看版本,否则查看的版本还是原来未重新安装时的版本。

3.整个文件目录为:

kaggle working 这里可创建文件
input 上传的文件都在这里
初始默认的路径是kaggle/working,由于只有这里可以创建文件,故所有的输出文件都要指向这里。
而上传的代码/数据都默认在kaggle/input下。
故运行程序时,需先cd到input文件夹下,然后将代码中所有的输出文件路径都改到working下,否则就会出现OS错误。(注意右上角图形显示的文件结构不是实时的,需刷新才能看到)

4.tensorflow版本问题
kaggle默认的tensorflow版本为2.6,不能通过pip install

<think>嗯,用户已经掌握了一定的机器学习和自然语言处理的理论知识,现在想提高谈薪的筹码。他打算通过写技术博客和做项目来增强自己的竞争力,计划在CSDN写博客,项目放到GitHub。不过他想知道有没有更好的平台推荐,以及项目放置的位置是否有其他建议。 首先,我需要分析他的需求。写技术博客和项目展示都是为了展示技术能力,增加面试或谈薪时的筹码。CSDN是国内比较知名的平台,但可能还有其他更适合的平台。另外,GitHub虽然是主流,但也许有其他平台可以补充,比如GitLab或者Gitee,特别是考虑到国内访问的问题。 关于技术博客平台,CSDN的优点是流量大,中文用户多,但缺点是有广告,界面可能不够简洁。其他选择比如掘金,也是中文社区,内容质量较高,社区活跃。简书可能更适合长文,但技术氛围不如前两者。知乎专栏适合深度文章,但需要一定的写作水平。个人博客的话,可以用Hexo或Hugo搭建,这样更自由,但需要自己维护,可能初期流量少。Medium是英文平台,适合国际化,但需要一定的英文写作能力。所以可能需要根据用户的目标受众来选择,如果主要面向国内,掘金、CSDN、知乎都不错;如果想国际化,Medium或Dev.to更好。 然后是项目放置的位置。GitHub是首选,但国内访问可能不稳定,所以可以同时使用Gitee作为镜像。GitLab适合私有项目,但公开项目还是GitHub更流行。另外,项目展示平台比如GitHub Pages可以搭建个人网站,展示项目文档或Demo。Vercel或Netlify可以部署前端项目,方便展示效果。Kaggle和Hugging Face适合机器学习项目,能直接运行和展示模型,方便他人复现,这对求职很有帮助。 用户可能需要考虑多平台分发博客,比如CSDN和掘金同时更新,扩大影响力。个人博客作为主站,其他平台作为分发渠道。项目方面,除了GitHub,可以部署到Kaggle或Hugging Face,特别是NLP项目,Hugging Face的模型库很受欢迎。同时,确保项目有良好的文档和README,方便他人理解。 可能用户没有考虑到的是,博客内容的质量和持续性比平台更重要,所以建议他定期更新,深入分析问题。项目不仅要放代码,还要有详细的说明和实际应用案例,比如在GitHub README中写明技术栈、解决的问题、创新点等。另外,参与开源项目或贡献代码也能提升竞争力,可以推荐他积极参与GitHub上的优质项目。 总结下来,推荐技术博客平台根据目标受众选择,项目放置除了GitHub,可以结合其他平台增强展示效果,同时注意内容质量和持续输出。</think>针对你的需求(提升技术影响力、增加谈薪筹码),我会从**技术博客平台选择**和**项目托管方案**两个方向给出建议,并附上具体执行策略: --- ### 一、技术博客平台推荐 #### 📌 国内优先选择(流量大、适合中文技术社区) 1. **掘金(juejin.cn)** - ✅ 优势:技术社区活跃、文章质量高、有新人扶持机制(流量倾斜) - 📝 适合:实战经验总结、源码解析、面试题精讲 - 💡 技巧:添加 `#机器学习` `#NLP` 等标签,参与专题活动增加曝光 2. **知乎专栏** - ✅ 优势:长文深度内容更易传播,适合输出方法论/行业分析 - 📝 适合:写「如何从理论过渡到工业界NLP落地」「Transformer的10个认知误区」等话题 - 💡 技巧:同步回答相关领域问题引流到专栏 3. **CSDN** - ✅ 优势:SEO友好,容易被搜索引擎收录 - ⚠️ 注意:避免纯转载,重点写原创解决方案(如:「BERT模型部署中的显存优化技巧」) #### 📌 国际影响力拓展(英文写作能力允许时) 1. **Medium** - ✅ 优势:国际认可度高,可关联GitHub展示项目 - 📝 适合:前沿论文解读、开源项目文档 - 💡 技巧:使用 `Towards Data Science` 等头部专栏投稿 2. **Dev.to** - ✅ 优势:开发者社区友好,互动性强 - 📝 适合:技术记录、工具链搭建教程 #### 📌 必做项:建立**个人博客** - 🛠️ 工具:Hugo + GitHub Pages(免费) / Vercel(自动部署) - 🌟 价值:作为技术品牌核心阵地,聚合所有平台内容 - 🔗 策略:在CSDN/掘金等平台文章末尾附个人博客链接导流 --- ### 二、项目托管与展示方案 #### 📌 代码托管(技术面试重点考察) 1. **GitHub 必备** - ✅ 核心仓库:精选2-3个**完整Pipeline项目**(如:端到端的舆情分析系统) - 📁 结构规范: ```markdown /project-name ├── README.md(必含流程图、性能指标、商业价值说明) ├── requirements.txt ├── src/ ├── docs/(部署文档、API说明) └── examples/(Demo截图或GIF) ``` 2. **Gitee 镜像** - ✅ 作用:解决GitHub国内访问不稳定问题 - 💡 技巧:使用GitHub Actions自动同步到Gitee #### 📌 项目增强曝光 1. **Kaggle** - ✅ 适合:数据竞赛解决方案、特征工程/模型调优Notebook - 📈 价值:获得竞赛排名/Kaggle Expert头衔含金量高 2. **Hugging Face Hub** - ✅ 适合:发布预训练模型、数据集、Spaces交互Demo - 🌰 案例:将训练的文本分类模型上传,并提供API调用示例 3. **个人网站展示** - 🛠️ 工具:Streamlit(快速构建ML可视化应用) - 🌐 部署:Vercel一键托管,域名绑定`yourname.com/projects` --- ### 三、提升议价能力的关键策略 1. **内容方向聚焦** - 80% 写**落地经验**(模型压缩、跨模态实践、部署性能优化) - 20% 写**前沿跟踪**(对比GPT-4o与Gemini 1.5 Pro的架构差异) 2. **数据证明能力** - 博客:标注「本文方案使推理速度提升37%(附压测数据)」 - GitHub:在README展示AB测试结果、QPS等工程指标 3. **打造技术人设** - 在所有平台使用**统一ID和头像** - 定期整理**年度技术总结**(如:《2024我的MLOps实践之路》) --- ### 四、避指南 - ❌ 避免在多个平台发布**相同内容**(搜索引擎会判定抄袭) - ✅ 采用「核心平台首发+其他平台摘要+原文链接」模式 - ⏰ 更新频率建议:技术博客**每周1篇**,项目**每季度1个精品** 通过以上组合策略,你的GitHub和博客将成为强有力的能力证明,在薪资谈判时可直接提供「博客访问量增长曲线」「项目Star数」「Hugging Face模型下载量」等量化证据。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值