引言
有时我们需要对程序进行优化、减少程序响应时间。除了一段段地对代码进行时间复杂度分析,我们还有更便捷的方法吗?
若能直接找到影响程序运行时间的函数调用,再有针对地对相关函数进行代码分析和优化,那相比漫无目的地看代码,效率就高多了。
将strace和pstack工具结合起来使用,就可以达到以上目的。strace跟踪程序使用的底层系统调用,可输出系统调用被执行的时间点以及各个调用耗时;pstack工具对指定PID的进程输出函数调用栈。
下面我们通过一个简单的消息收发程序,说明使用strace、pstack进行程序分析的具体方法。
程序说明
该程序是一个简单的socket程序,由server/client组成。server端监听某端口,等待client的连接,client连接server后定时向server发送消息,server每接收一条消息后向client发送响应消息。程序server与client交互如下图示:
在程序运行起来之后,发现server接收到client的submit消息之后,需要较长时间才发出resp响应。通过tcpdump抓包发现,time2与time1的时间间隔在1s左右:
由上初步分析可知,消息响应慢是server端程序问题。下面我们来看如何使用strace和pstack分析server端程序响应慢的原因。
strace查看系统调用
首先我们拉起server/client程序,并使用strace对server进程进行跟踪:
- # ps -elf | grep server | grep -v grep
- 0 S root 16739 22642 0 76 0 - 634 1024 14:26 pts/2 00:00:00 ./server
- # strace -o server.strace -Ttt -p 16739
- Process 16739 attached - interrupt to quit
稍等一段时间之后,我们将strace停掉, server.strace文件中有以下输出:
- 复制代码
-
- 14:46:39.741366 select(8, [3 4], NULL, NULL, {1, 0}) = 1 (in [4], left {0, 1648}) <0.998415>
- 14:46:40.739965 recvfrom(4, "hello", 6, 0, NULL, NULL) = 5 <0.000068>
- 14:46:40.740241 write(1, "hello\n", 6) = 6 <0.000066>
- 14:46:40.740414 rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0 <0.000046>
- 14:46:40.740565 rt_sigaction(SIGCHLD, NULL, {SIG_DFL, [], 0}, 8) = 0 <0.000048>
- 14:46:40.740715 rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0 <0.000046>
- 14:46:40.740853 nanosleep({1, 0}, {1, 0}) = 0 <1.000276>
- 14:46:41.741284 sendto(4, "hello\0", 6, 0, NULL, 0) = 6 <0.000111>
-
- 复制代码
可以看到server接收数据之后(对应recvfrom调用),经过1s左右时间将消息发出(对应sendto调用),从响应时间看,与抓包的结果吻合。又可以看出nanosleep系统调用耗费了1s时间。
因而可以断定响应延时由nanosleep对应的函数调用造成。
那具体是哪一个函数调用呢?在strace输出结果中并不能找到答案,因其输出显示都是系统调用,要显示程序中函数调用栈信息,就轮到pstack上场了。
pstack查看函数堆栈
pstack是一个脚本工具,其核心实现就是使用了gdb以及thread apply all bt命令,下面我们使用pstack查看server进程函数堆栈:
- # sh pstack.sh 16739
- #0 0x00002ba1f8152650 in __nanosleep_nocancel () from /lib64/libc.so.6
- #1 0x00002ba1f8152489 in sleep () from /lib64/libc.so.6
- #2 0x00000000004007bb in ha_ha ()
- #3 0x0000000000400a53 in main ()
从以上信息可以看出,函数调用关系为:main->ha_ha->sleep,因而我们可以找到ha_ha函数进行分析和优化修改。
小结
本文通过一个server/client程序事例,说明了使用strace和pstack分析响应延时的方法。
由最初server端响应慢现象,到使用strace跟踪出具体耗时的系统调用,再到使用pstack查到程序中具体的耗时函数,一步步找到了影响程序运行时间的程序代码。
更多地了解底层,从操作系统层面着手,更有助于程序性能分析与优化。
手把手教你用Strace诊断问题
早些年,如果你知道有个 strace 命令,就很牛了,而现在大家基本都知道 strace 了,如果你遇到性能问题求助别人,十有八九会建议你用 strace 挂上去看看,不过当你挂上去了,看着满屏翻滚的字符,却十有八九看不出个所以然。本文通过一个简单的案例,向你展示一下在用 strace 诊断问题时的一些套路。
如下真实案例,如有雷同,实属必然!让我们看一台高负载服务器的 top 结果:
top
技巧:运行 top 时,按「1」打开 CPU 列表,按「shift+p」以 CPU 排序。
在本例中大家很容易发现 CPU 主要是被若干个 PHP 进程占用了,同时 PHP 进程占用的比较多的内存,不过系统内存尚有结余,SWAP 也不严重,这并不是问题主因。
不过在 CPU 列表中能看到 CPU 主要消耗在内核态「sy」,而不是用户态「us」,和我们的经验不符。Linux 操作系统有很多用来跟踪程序行为的工具,内核态的函数调用跟踪用「strace」,用户态的函数调用跟踪用「ltrace」,所以这里我们应该用「strace」:
shell> strace -p <PID>
不过如果直接用 strace 跟踪某个进程的话,那么等待你的往往是满屏翻滚的字符,想从这里看出问题的症结并不是一件容易的事情,好在 strace 可以按操作汇总时间:
shell> strace -cp <PID>
通过「c」选项用来汇总各个操作的总耗时,运行后的结果大概如下图所示:
strace -cp
很明显,我们能看到 CPU 主要被 clone 操作消耗了,还可以单独跟踪一下 clone:
shell> strace -T -e clone -p <PID>
通过「T」选项可以获取操作实际消耗的时间,通过「e」选项可以跟踪某个操作:
strace -T -e clone -p
很明显,一个 clone 操作需要几百毫秒,至于 clone 的含义,参考 man 文档:
clone() creates a new process, in a manner similar to fork(2). It is actually a library function layered on top of the underlying clone() system call, hereinafter referred to as sys_clone. A description of sys_clone is given towards the end of this page.
Unlike fork(2), these calls allow the child process to share parts of its execution context with the calling process, such as the memory space, the table of file descriptors, and the table of signal handlers. (Note that on this manual page, “calling process” normally corresponds to “parent process”. But see the description of CLONE_PARENT below.)
简单来说,就是创建一个新进程。那么在 PHP 里什么时候会出现此类系统调用呢?查询业务代码看到了 exec 函数,通过如下命令验证它确实会导致 clone 系统调用:
shell> strace -eclone php -r 'exec("ls");'
最后再考大家一个题:如果我们用 strace 跟踪一个进程,输出结果很少,是不是说明进程很空闲?其实试试 ltrace,可能会发现别有洞天。记住有内核态和用户态之分。