自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(14)
  • 收藏
  • 关注

原创 【计算机视觉5】图像检索

特点:只针对词汇,不依赖于顺序,单词相对于文本是独立存在的,不受顺序和语法句法等要素的影响。Bag of Featuresfeature为特征,即根据特征进行分类。Bag of Feature 是一种图像特征提取方法,参考了Bag of Words的思路,把每幅图像描述为一个局部区域/关键点(Patches/Key Points)特征的无序集合。同时从图像抽象出很多具有代表性的「关键词」,形成一个字典,再统计每张图片中出现的「关键词」数量,得到图片的特征向量。提取图像特征;对特征进行聚类,得到一部字典

2022-06-18 20:31:28 522 1

原创 【计算机视觉4】相机标定

世界坐标系、相机坐标系、像素坐标系、成像平面坐标系。我们可以把现实生活遇到的任何事物用坐标系表示出来,也可以用坐标系表示整个世界,于是便建立起了世界坐标系。想象一下,摄像机拍摄的是一张二维图片,因此整个摄像机可以用一个坐标系去标识它获取到的某个物体的位置,这是相机坐标系。像素坐标系就是相片的坐标系。成像平面坐标系类似于像素坐标系。原本我们期望的拍摄效果:是每个坐标系中的像素都相互对应,类似于一种一元一次方程,但由于镜头或者其他关系,现在这条“直线”弯了,得到的图像也会出现“弯曲”,因此我们需要把它矫正。

2022-06-05 21:37:23 1018

原创 【计算机视觉三】图像拼接

摘要:使用基于python的opencv中的sift算法检测图像中的特征点。通过knn匹配,每个关键点两个match,即最近邻与次近邻。 采用SIFT作者提出的比较最近邻距离与次近邻距离的SIFT匹配方式来筛选出最近邻远优于次近邻的匹配作为good matches。最后,根据投影映射关系,使用计算出来的单应性矩阵H进行透视变换,再进行拼接。准备:import cv2import matplotlib.pyplot as pltimport numpy as np%matplotlib in

2022-04-18 14:08:14 3108

原创 【计算机视觉作业二】局部图像描述子

1.Harris角点检测1.1 原理:图像: I图像的灰度值(指单个像素值):I(x,y)I(x,y)图像的平移向量:[u,v][u,v]平移产生的灰度变化:E(u,v)E(u,v)高斯窗口系数:w(x,y)w(x,y)在我们解决问题时,往往希望找到特征点,“特征”顾名思义,指能描述物体本质的东西,还有一种解释就是这个特征微小的变化都会对物体的某一属性产生重大的影响。而角点就是这样的特征。观察日常生活中的“角落”就会发现,“角落”可以视为所有平面的交汇处,或者说是所有表面的发起处。假..

2022-03-30 22:36:24 282

原创 【计算机视觉】作业一

直方图定义横坐标:图像中各个像素点的灰度级 纵坐标:就有该灰度级的像素个数原图:彩色图像直方图:代码:#coding=utf-8 import cv2 import numpy as np img = cv2.imread('1.jpg') h = np.zeros((256,256,3)) #创建用于绘制直方图的全0图像 bins = np.arange(256).reshape(256,1) #直方...

2022-03-12 16:23:03 4680

原创 机器学习-支持向量机

前言:支持向量机(support vector machines,SVM)是一种二分类模型,它的目的是寻找一个超平面来对样本进行分割,分割的原则是 间隔最大化, 可以形式化为一个求解凸二次规划的问题,也等价于正则化的合页损失函数的最小化问题,支持向量机的学习算法是求解凸二次规划的最优化算法。1.线性可分向量机可以很容易就在数据中给出一条直线将两组数据点分开。在二维空间上,两类点被一条直线完全分开叫做线性可分。2.支持向量和间隔边界3.线性可分支持向量机...

2021-12-26 22:39:58 1943

原创 机器学习-朴素贝叶斯。

前言:朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法。朴素贝叶斯原理简单,也很容易实现,多用于文本分类,比如垃圾邮件过滤。1.算法思想——基于概率的预测决策树算法中提到朴素贝叶斯分类模型是应用最为广泛的分类模型之一,朴素贝叶斯分类是贝叶斯分类器的一种,贝叶斯分类算法是统计学的一种分类方法,利用概率统计知识进行分类,其分类原理就是利用贝叶斯公式根据某对象的先验概率计算出其后验概率(即该对象属于某一类的概率),然后选择具有最大后验概率的类作为该对象所属的类。目前研究较多的贝叶

2021-11-28 13:21:09 1441

原创 【C++实验4】StL 应用

前言:简单介绍:C++ STL(标准模板库)是一套功能强大的 C++ 模板类,提供了通用的模板类和函数,这些模板类和函数可以实现多种流行和常用的算法和数据结构,如向量、链表、队列、栈等。STL的一个重要特点就是数据结构和算法的分离。例如,STL中sort()函数是完全通用的,你可以用它来操作几乎任何数据集合,包括链表,容器和数组。STL另一个重要特性是它不是面向对象的,主要依赖于模版,而不是封装和继承。1.迭代器STL中的迭代器是C++指针的泛化,它在算法和容器之间充当一个中间层,为处理

2021-11-27 13:16:36 648

原创 机器学习-Logistic回归

前言:逻辑回归是应用非常广泛的一个分类机器学习算法,它将数据拟合到一个logit函数(或者叫做logistic函数)中,从而能够完成对事件发生的概率进行预测。要说逻辑回归,我们得追溯到线性回归,想必大家对线性回归都有一定的了解,即对于多维空间中存在的样本点,我们用特征的线性组合去拟合空间中点的分布和轨迹。如下图所示: 线性回归能对连续值结果进行预测,而现实生活中常见的另外一类问题是,分类问题。...

2021-11-21 22:57:28 859

原创 【C++实验三】模板

1、模板的概念我们已经学过重载(Overloading),对重载函数而言,C++的检查机制能通过函数参数的不同及所属类的不同。正确的调用重载函数。例如,为求两个数的最大值,我们定义MAX()函数需要对不同的数据类型分别定义不同重载(Overload)版本。//函数1.int max(int x,int y){ return(x>y)?x:y ; }//函数2.float max( float x,float y){ return (x>y)? x:y ; }//函..

2021-11-16 22:04:34 111

原创 [C++实验2 ]继承和多态

实验内容:一、继承访问权限测试设计类A具有public, protected, private等不同属性的成员函数或变量;类B通过public, protected, private等不同方式继承A,在类B的成员函数中测试访问A的成员函数或变量;在类B中添加public, protected, private等不同属性的成员函数或变量,在外部测试访问B的各个成员函数或变量;B以private方式继承A,尝试把A中的部分public成员提升为public。二、友元类继承测试设计类A含有私

2021-11-02 20:01:50 638

原创 【机器学习】决策树python实现

决策树理解:所谓决策树,就是根据树结构来进行决策。举个例子,小明的妈妈去上海人民公园相亲角为儿子物色相亲对象,广场上数百名适婚年龄男女的家长自发来到这里,手里拿着自家孩子的基本资料。小明妈为了选到一个理想的儿媳妇,在看到其他人手中的基本资料后,根据自己内心中各项情况的重要程度(从高到低分别是性别,学历,颜值,房子),依次进行判断:性别是否是女孩子? 如果不是,就pass; 如果是,那学历是否是本科以上? 如果不是,那是否颜值过关且家中有房? ...

2021-10-28 21:24:10 8210 2

原创 【c++实验一】CMatrix类设计与实现

1 算法原理knn算法的核心思想是未标记样本的类别,由距离其最近的k个邻居投票来决定。具体的,假设我们有一个已标记好的数据集。此时有一个未标记的数据样本,我们的任务是预测出这个数据样本所属的类别。knn的原理是,计算待标记样本和数据集中每个样本的距离,取距离最近的k个样本。待标记的样本所属类别就由这k个距离最近的样本投票产生。假设X_test为待标记的样本,X_train为已标记的数据集,算法原理的伪代码如下:遍历X_train中的所有样本,计算每个样本与X_test的距离,并把距离保存在Dis

2021-10-13 16:42:07 150

原创 机器学习-k近邻算法

1 算法原理knn算法的核心思想是未标记样本的类别,由距离其最近的k个邻居投票来决定。具体的,假设我们有一个已标记好的数据集。此时有一个未标记的数据样本,我们的任务是预测出这个数据样本所属的类别。knn的原理是,计算待标记样本和数据集中每个样本的距离,取距离最近的k个样本。待标记的样本所属类别就由这k个距离最近的样本投票产生。假设X_test为待标记的样本,X_train为已标记的数据集,算法原理的伪代码如下:遍历X_train中的所有样本,计算每个样本与X_test的距离,并把距离保存在Dis

2021-09-28 11:17:52 267

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除