机器学习-支持向量机

前言:

支持向量机(support vector machines,SVM)是一种二分类模型,它的目的是寻找一个超平面来对样本进行分割,分割的原则是 间隔最大化, 可以形式化为一个求解凸二次规划的问题,也等价于正则化的合页损失函数的最小化问题,支持向量机的学习算法是求解凸二次规划的最优化算法。
 

1.线性可分向量机

可以很容易就在数据中给出一条直线将两组数据点分开。

 在二维空间上,两类点被一条直线完全分开叫做线性可分。

2.支持向量和间隔边界

 

3.线性可分支持向量机 

给定线性可分训练数据集,通过间隔最大化或等价地求解相应的凸二次规划问题学习得到的分离超平面为

                                                                    w∗x+b∗=0

以及相应的分类决策函数

                                                                  f(x)=sign(w∗x+b∗)

称为线性可分支持向量机

3.1优化目标

1、线性可分支持向量机原始的最优化目标

推导:

 

 如图所示,根据支持向量的定义(离超平面最近的点)我们知道,支持向量到超平面的距离为 d,其他点到超平面的距离大于 d。

在这里插入图片描述

 在这里插入图片描述

 

 

 2、线性可分支持向量机的对偶最优化目

其中

3.约束条件

约束条件下的函数优化问题的步骤(使用拉格朗日乘子法和拉格朗日对偶):

           1.  写出原始问题的对偶问题的表达式

           2.  把对偶表达式对x求导并令其为0,此时看作常数。

           3.   得到的x的表达式是的函数,再对分别求偏导令其为0,得出的值。

           4.   把第3步得到的的值带入到步骤2中的x表达式,得出x的值。

4.编程思想:

编程思想:

                1.  首先我们初始化 ai为0,即开始时每个样本点对应的 ai为0。我们的决策面方程的截距  也初始化为0

                2.  每次我们选取两个拉格朗日乘子进行优化,选择第一个乘子是外循环,外循环寻找有两种遍历方式:一种是按样本点的本身顺序遍历所有的样本点,寻找不满足KKT条件的,这里不满足KKT条件是指违反公式㊶,违反公式有三种情况:

                                      

  

            3.  第二种寻找第一个乘子\alpha _{2}的方式是:遍历非边界\alpha _{i}(即满足0<\alpha _{i}<C),令其满足KKT条件。

           4.  我们做法是先使用第一种方式对全部样本点进行单遍扫描,找出0<\alpha _{i}<C的样本继续用第二种扫描方式进行多遍扫描,直至0<\alpha _{i}<C的样本满足KKT条件(即\alpha _{i}不再改变),此时再进行方式一来扫描,如果\alpha _{i}还是没有改变,那么退出循环。

5.代码部分

5.1 数据集:

-0.397822   8.058397    -1
0.824839    13.730343   -1
1.507278    5.027866    1
0.099671    6.835839    1
-0.344008   10.717485   -1
1.785928    7.718645    1
-0.918801   11.560217   -1
-0.364009   4.747300    1
-0.841722   4.119083    1
0.490426    1.960539    1
-0.007194   9.075792    -1
0.356107    12.447863   -1
0.342578    12.281162   -1
-0.810823   -1.466018   1
2.530777    6.476801    1
1.296683    11.607559   -1
0.475487    12.040035   -1
-0.783277   11.009725   -1
0.074798    11.023650   -1
-1.337472   0.468339    1
-0.102781   13.763651   -1
-0.147324   2.874846    1
0.518389    9.887035    -1
1.015399    7.571882    -1
-1.658086   -0.027255   1
1.319944    2.171228    1
2.056216    5.019981    1
-0.851633   4.375691    1
-1.510047   6.061992    -1
-1.076637   -3.181888   1
1.821096    10.283990   -1
3.010150    8.401766    1
-1.099458   1.688274    1
-0.834872   -1.733869   1
-0.846637   3.849075    1
1.400102    12.628781   -1
1.752842    5.468166    1
0.078557    0.059736    1
0.089392    -0.715300   1
1.825662    12.693808   -1
0.197445    9.744638    -1
0.126117    0.922311    1
-0.679797   1.220530    1
0.677983    2.556666    1
0.761349    10.693862   -1
-2.168791   0.143632    1
1.388610    9.341997    -1
0.317029    14.739025   -1
 

5.2代码:

from numpy import *
import random
import matplotlib.pyplot as plt
import numpy
 
def kernelTrans(X,A,kTup):                    # 核函数(此例未使用)
    m,n=shape(X)
    K = mat(zeros((m,1)))
    if kTup[0] =='lin':
        K=X*A.T
    elif kTup[0]=='rbf':
        for j in range(m):
            deltaRow = X[j,:]-A
            K[j]=deltaRow*deltaRow.T           # ||w||^2 = w^T * w
        K =exp(K/(-1*kTup[1]**2))              # K = e^(||x-y||^2 / (-2*sigma^2))
    else:
        raise NameError("Houston we Have a problem --")
    return K
 
class optStruct:
    def __init__(self,dataMain,classLabel,C,toler,kTup):
 
        self.X = dataMain                     # 样本矩阵
        self.labelMat = classLabel
        self.C = C                            # 惩罚因子
        self.tol = toler                      # 容错率
        self.m = shape(dataMain)[0]           # 样本点个数
        self.alphas = mat(zeros((self.m,1)))  # 产生m个拉格郎日乘子,组成一个m×1的矩阵
        self.b =0                             # 决策面的截距
        self.eCache = mat(zeros((self.m,2)))    # 产生m个误差 E=f(x)-y ,设置成m×2的矩阵,矩阵第一列是标志位,标志为1就是E计算好了,第二列是误差E
        # self.K = mat(zeros((self.m,self.m)))
        # for i in range(self.m):               # K[,]保存的是任意样本之间的相似度(用高斯核函数表示的相似度)
        #     self.K[:,i]=kernelTrans(self.X,self.X[i,:],kTup)
 
def loadDataSet(filename):                 # 加载数据
    dataMat = []
    labelMat = []
    fr = open(filename)
    for line in fr.readlines():
        lineArr = line.split()
        dataMat.append([float(lineArr[0]),float(lineArr[1])])
        labelMat.append(float(lineArr[2]))     # 一维列表
    return dataMat, labelMat
 
def selectJrand(i, m):       # 随机选择一个不等于i的下标
    j =i
    while(j==i):
        j = int(random.uniform(0,m))
    return j
 
def clipAlpha(aj, H,L):
    if aj>H:                      # 如果a^new 大于上限值,那么就把上限赋给它
        aj = H
    if L>aj:                      # 如果a^new 小于下限值,那么就把下限赋给它
        aj = L
    return aj
 
def calcEk(oS, k):           # 计算误差E, k代表第k个样本点,它是下标,oS是optStruct类的实例
    # fXk = float(multiply(oS.alphas,oS.labelMat).T * oS.K[:,k] + oS.b)   # 公式f(x)=sum(ai*yi*xi^T*x)+b
    fXk = float(multiply(oS.alphas,oS.labelMat).T * (oS.X*oS.X[k,:].T)) +oS.b
    Ek = fXk - float(oS.labelMat[k])          # 计算误差 E=f(x)-y
    return Ek
 
def selectJ(i, oS, Ei):      # 选择两个拉格郎日乘子,在所有样本点的误差计算完毕之后,寻找误差变化最大的那个样本点及其误差
    maxK = -1                # 最大步长的因子的下标
    maxDeltaE = 0            # 最大步长
    Ej = 0                   # 最大步长的因子的误差
    oS.eCache[i] = [1,Ei]
    valiEcacheList = nonzero(oS.eCache[:,0].A)[0]    # nonzero结果是两个array数组,第一个数组是不为0的元素的x坐标,第二个数组是该位置的y坐标
                                                  # 此处寻找误差矩阵第一列不为0的数的下标
    print("valiEcacheList is {}".format(valiEcacheList))
    if (len(valiEcacheList))>1:
        for k in valiEcacheList:          # 遍历所有计算好的Ei的下标,valiEcacheLIst保存了所有样本点的E,计算好的有效位置是1,没计算好的是0
 
            if k == i:
                continue
            Ek = calcEk(oS,k)
            deltaE = abs(Ei-Ek)          # 距离第一个拉格朗日乘子a1绝对值最远的作为第二个朗格朗日乘子a2
            if deltaE>maxDeltaE:
                maxK = k                 # 记录选中的这个乘子a2的下标
                maxDeltaE = deltaE       # 记录他俩的绝对值
                Ej = Ek                  # 记录a2此时的误差
        return maxK, Ej
    else:                             # 如果是第一次循环,随机选择一个alphas
        j = selectJrand(i, oS.m)
        # j = 72
        Ej = calcEk(oS, j)
    return j,Ej
 
def updateEk(oS, k):
    Ek = calcEk(oS, k)
    oS.eCache[k] = [1,Ek]        # 把第k个样本点的误差计算出来,并存入误差矩阵,有效位置设为1
 
def innerL(i, oS):
    Ei = calcEk(oS, i)           # KKT条件, 若yi*(w^T * x +b)-1<0 则 ai=C  若yi*(w^T * x +b)-1>0 则 ai=0
    print("i is {0},Ei is {1}".format(i,Ei))
    if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):
        j,Ej = selectJ(i,oS,Ei)
        print("第二个因子的坐标{}".format(j))
        alphaIold = oS.alphas[i].copy()       # 用了浅拷贝, alphaIold 就是old a1,对应公式
        alphaJold = oS.alphas[j].copy()
        if oS.labelMat[i] != oS.labelMat[j]:  # 也是根据公式来的,y1 不等于 y2时
            L = max(0,oS.alphas[j] - oS.alphas[i])
            H = min(oS.C, oS.C+oS.alphas[j]-oS.alphas[i])
        else:
            L = max(0,oS.alphas[j]+oS.alphas[i]-oS.C)
            H = min(oS.C,oS.alphas[j]+oS.alphas[i])
        if L==H:         # 如果这个j让L=H,i和j这两个样本是同一类别,且ai=aj=0或ai=aj=C,或者不同类别,aj=C且ai=0
                         # 当同类别时 ai+aj = 常数 ai是不满足KKT的,假设ai=0,需增大它,那么就得减少aj,aj已经是0了,不能最小了,所以此情况不允许发生
                         # 当不同类别时 ai-aj=常数,ai是不满足KKT的,ai=0,aj=C,ai需增大,它则aj也会变大,但是aj已经是C的不能再大了,故此情况不允许
            print("L=H")
            return 0
        # eta = 2.0*oS.K[i,j]-oS.K[i,i]-oS.K[j,j]   # eta=K11+K22-2*K12
        eta = 2.0*oS.X[i,:]*oS.X[j,:].T - oS.X[i,:]*oS.X[i,:].T - oS.X[j,:]*oS.X[j,:].T
        if eta >= 0:                 # 这里跟公式正好差了一个负号,所以对应公式里的 K11+K22-2*K12 <=0,即开口向下,或为0成一条直线的情况不考虑
            print("eta>=0")
            return 0
        oS.alphas[j]-=oS.labelMat[j]*(Ei-Ej)/eta     # a2^new = a2^old+y2(E1-E2)/eta
        print("a2 归约之前是{}".format(oS.alphas[j]))
        oS.alphas[j]=clipAlpha(oS.alphas[j],H,L)     # 根据公式,看看得到的a2^new是否在上下限之内
        print("a2 归约之后is {}".format(oS.alphas[j]))
        # updateEk(oS,j)               # 把更新后的a2^new的E更新一下
        if abs(oS.alphas[j]-alphaJold)<0.00001:
            print("j not moving enough")
            return 0
        oS.alphas[i] +=oS.labelMat[j]*oS.labelMat[i]*(alphaJold-oS.alphas[j])   # 根据公式a1^new = a1^old+y1*y2*(a2^old-a2^new)
        print("a1更新之后是{}".format(oS.alphas[i]))
        # updateEk(oS,i)
        # b1^new = b1^old+(a1^old-a1^new)y1*K11+(a2^old-a2^new)y2*K12-E1
        # b1 = oS.b-Ei-oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i]-oS.labelMat[j]*\
        #      (oS.alphas[j]-alphaJold)*oS.K[i,j]
 
        b1 = oS.b-Ei-oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.X[i,:]*oS.X[i,:].T-oS.labelMat[j]* \
             (oS.alphas[j]-alphaJold)*oS.X[i,:]*oS.X[j,:].T
        # b2 = oS.b-Ej-oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]-oS.labelMat[j]* \
        #      (oS.alphas[j]-alphaJold)*oS.K[j,j]
 
        b2 = oS.b-Ej-oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.X[i,:]*oS.X[j,:].T-oS.labelMat[j]* \
             (oS.alphas[j]-alphaJold)*oS.X[j,:]*oS.X[j,:].T
        updateEk(oS,j)          # 个人认为更新误差应在更新b之后,因为公式算出的b的公式使用的是以前的Ei
        updateEk(oS,i)
        # b2^new=b2^old+(a1^old-a1^new)y1*K12+(a2^old-a2^new)y2*K22-E2
        if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]):
            oS.b = b1.A[0][0]
        elif (0<oS.alphas[j]) and (oS.C > oS.alphas[j]):
            oS.b = b2.A[0][0]
        else:
            oS.b = (b1+b2)/2.0
 
 
        print("b is {}".format(oS.b))
        return 1
    else:
        return 0
 
def smoP(dataMatIn, classLabels, C,toler,maxIter,kTup=('lin',)):
    oS = optStruct(mat(dataMatIn), mat(classLabels).transpose(),C,toler,kTup)
    iter = 0
    entireSet = True              # 两种遍历方式交替
    alphaPairsChanged = 0
    while (iter<maxIter) and ((alphaPairsChanged>0) or (entireSet)):
        alphaPairsChanged = 0
        if entireSet:
            for i in range(oS.m):
                alphaPairsChanged += innerL(i,oS)
                print("fullSet, iter:%d i: %d pairs changed %d"%(iter,i ,alphaPairsChanged))
 
            iter+=1
            print("第一种遍历alphaRairChanged is {}".format(alphaPairsChanged))
            print("-----------eCache is {}".format(oS.eCache))
            print("***********alphas is {}".format(oS.alphas))
            print("---------------------------------------")
        else:
            nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]  # 这时数组相乘,里面其实是True 和False的数组,得出来的是
                                                                          # 大于0并且小于C的alpha的下标
            for i in nonBoundIs:
                alphaPairsChanged += innerL(i,oS)
                print("non-bound, iter: %d i:%d, pairs changed %d"%(iter,i,alphaPairsChanged))
            print("第二种遍历alphaPairChanged is {}".format(alphaPairsChanged))
            iter+=1
        if entireSet:
            entireSet = False  # 当第二种遍历方式alpha不再变化,那么继续第一种方式扫描,第一种方式不再变化,此时alphachanged为0且entireSet为false,退出循环
        elif (alphaPairsChanged==0):
            entireSet=True
        print("iteration number: %d"%iter)
    return oS.b,oS.alphas
 
def calcWs(alphas,dataArr,classLabels):                # 通过alpha来计算w
    X = mat(dataArr)
    labelMat = mat(classLabels).transpose()
    m,n = shape(X)
    w = zeros((n,1))
    for i in range(m):
        w += multiply(alphas[i]*labelMat[i], X[i,:].T)        # w = sum(ai*yi*xi)
    return w
 
def draw_points(dataArr,classlabel, w,b,alphas):
    myfont = FontProperties(fname='/usr/share/fonts/simhei.ttf')    # 显示中文
    plt.rcParams['axes.unicode_minus'] = False     # 防止坐标轴的‘-’变为方块
    m = len(classlabel)
    red_points_x=[]
    red_points_y =[]
    blue_points_x=[]
    blue_points_y =[]
    svc_points_x =[]
    svc_points_y =[]
    # print(type(alphas))
    svc_point_index = nonzero((alphas.A>0) * (alphas.A <0.8))[0]
    svc_points = array(dataArr)[svc_point_index]
    svc_points_x = [x[0] for x in list(svc_points)]
    svc_points_y = [x[1] for x in list(svc_points)]
    print("svc_points_x",svc_points_x)
    print("svc_points_y",svc_points_y)
 
    for i in range(m):
        if classlabel[i] ==1:
            red_points_x.append(dataArr[i][0])
            red_points_y.append(dataArr[i][1])
        else:
            blue_points_x.append(dataArr[i][0])
            blue_points_y.append(dataArr[i][1])
 
    fig = plt.figure()                     # 创建画布
    ax = fig.add_subplot(111)
    ax.set_title("SVM-Classify")           # 设置图片标题
    ax.set_xlabel("x")                     # 设置坐标名称
    ax.set_ylabel("y")
    ax1=ax.scatter(red_points_x, red_points_y, s=30,c='red', marker='s')   #s是shape大小,c是颜色,marker是形状,'s'代表是正方形,默认'o'是圆圈
    ax2=ax.scatter(blue_points_x, blue_points_y, s=40,c='green')
    # ax.set_ylim([-6,5])
    print("b",b)
    print("w",w)
    x = arange(-4.0, 4.0, 0.1)                   # 分界线x范围,步长为0.1
    # x = arange(-2.0,10.0)
    if isinstance(b,numpy.matrixlib.defmatrix.matrix):
        b = b.A[0][0]
    y = (-b-w[0][0]*x)/w[1][0]    # 直线方程 Ax + By + C = 0
    ax3,=plt.plot(x,y, 'k')
    ax4=plt.scatter(svc_points_x,svc_points_y,s=50,c='orange',marker='p')
    plt.legend([ax1, ax2,ax3,ax4], ["red points","blue points", "decision boundary","support vector"], loc='lower right')         # 标注
    plt.show()
 
dataArr,labelArr = loadDataSet('/home/zhangqingfeng/test/svm_test_data')
b,alphas = smoP(dataArr,labelArr,0.8,0.001,40)
w=calcWs(alphas,dataArr,labelArr)
draw_points(dataArr,labelArr,w,b,alphas)

5.3运行结果:

 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值