题意:
n个人要去一个地方p,给出每个人的一维坐标a[i],去这个地方需要一把钥匙,总共有k把钥匙,给出每把钥匙的坐标b[i],问n个人最后都到达了这个地方需要多少经过多少时间,每个人走一个单位距离需要一个单位时间。
解题思路:
看起来很复杂的题,有目的地坐标还有钥匙坐标,其实仔细想想,取到钥匙后,接下来还需要的时间也随之确定下来了,所以只需要考虑人和钥匙的关系即可。
可以定义dp[i][j]表示前i个人从前j把钥匙中取走i把到达目的地的最大时间。
转移就是dp[i][j]=min(dp[i][j-1], max(dp[i-1][j-1], abs(a[i]-b[i])+abs(b[i]-p));
别忘了排序,别忘了long long,就做完了。
代码:
#include <bits/stdc++.h>
#define LL long long
using namespace std;
const LL inf=1e16;
LL dp[1005][2005];
LL a[1005];
LL b[2006];
LL p;
int main()
{
int n, i, j, k;
cin>>n>>k>>p;
for(i=1; i<=n; i++)scanf("%lld", &a[i]);
sort(a+1, a+n+1);
for(i=1; i<=k; i++)scanf("%lld", &b[i]);
sort(b+1, b+k+1);
for(j=0; j<=k; j++)dp[0][j]=0;
for(i=1; i<=n; i++)
{
for(j=i; j<=k; j++)
{
if(i==j)
{
dp[i][j]=max(dp[i-1][j-1],abs(a[i]-b[j])+abs(b[j]-p));
continue;
}
dp[i][j]=min(dp[i][j-1], max(dp[i-1][j-1],abs(a[i]-b[j])+abs(b[j]-p)));
}
}
j=n;
for(i=n; i<=k; i++)
{
if(dp[n][i]<dp[n][j])j=i;
// cout<<dp[n][i]<<endl;
}
cout<<dp[n][j]<<endl;
}