模拟幅度调制系统抗干扰性能仿真分析
1.引言
模拟调制技术在20世纪中曾有较大的应用,如军事通信、短波通信、模拟移动通信、模拟调频广播和模拟调幅广播等。虽然现在通信的发展趋势为数字化,但数字技术并不能完全替代模拟技术,而且模拟调制技术是通信理论的基本知识。模拟信号的载波调制电路里面经常要用到调制与解调,而AM的调制与解调是最基本的,也是经常用到的,为了进一步了解模拟调幅,展现MATLAB中M文件程序设计优势,本实验将用MATLAB实现AM调制解调的程序设计。
2.系统模型
2.1.常规幅度调制(AM)
一,调制器:
AM调制器模型如图1所示,可看出:
1.
s
A
M
(
t
)
=
A
c
[
1
+
m
(
t
)
]
c
o
s
2
π
f
c
t
1.\,\,s_{AM}(t)=A_c[1+m(t)]cos2\pi f_ct
1.sAM(t)=Ac[1+m(t)]cos2πfct
其中,m(t)为基带信号,
s
A
M
(
t
)
s_{AM}(t)
sAM(t)为调制信号;其调制波形如图2.3所示。由此,容易看出调制信号的包络就对应着吗m(t)的变化规律
进一步,我们定义调幅指数为
2.
β
A
M
=
m
a
x
∣
m
(
t
)
∣
2.\,\,\beta_{AM} =max|m(t)|
2.βAM=max∣m(t)∣
它反映了信号在载波幅度上的调制,
β
A
M
>
1
\beta_{AM}>1
βAM>1时为过调制
二,相干解调:
根据公式1,我们可以得到AM信号的频谱密度为
3.
S
A
M
(
f
)
=
A
c
2
[
δ
(
f
−
f
c
)
+
δ
(
f
+
f
c
)
]
+
A
c
2
[
M
(
f
−
f
c
)
+
M
(
f
+
f
c
)
]
3.\,\,S_{AM}(f)=\frac{A_c}{2}[\delta(f-f_c)+\delta(f+f_c)]+\frac{A_c}{2}[M(f-f_c)+M(f+f_c)]
3.SAM(f)=2Ac[δ(f−fc)+δ(f+fc)]+2Ac[M(f−fc)+M(f+fc)]
这里
M
(
f
)
M(f)
M(f)为基带信号频谱这里假定其最大频率(带宽)为B,显然AM信号包含两个部分一是离散载波,在
f
c
f_c
fc处的冲激;二是边带信号,包括上边带和下边带,已调信号
S
A
M
S_{AM}
SAM带宽为2B,因此称之为边带信号
2.2.抑制载波双边带调幅(DSB-SC)
由图可以看出,
4.
S
D
S
B
(
t
)
=
A
c
m
(
t
)
c
o
s
2
π
f
c
t
4.\,\,S_{DSB}(t)=A_cm(t)cos2\pi f_ct
4.SDSB(t)=Acm(t)cos2πfct
其时序波形如图2.6。
同理其频谱为:
5.
S
D
S
B
(
f
)
=
A
c
2
[
M
(
f
−
f
c
)
+
M
(
f
+
f
c
)
]
5.\,\,S_{DSB}(f)=\frac{A_c}{2}[M(f-f_c)+M(f+f_c)]
5.SDSB(f)=2Ac[M(f−fc)+M(f+fc)]
其时序波形如图2.7。

抑制载波双边带双边带调制器如图2.5所示。显然,与AM调制不同之处在于DSB直接用
m
(
t
)
m(t)
m(t)进行调制。
上述可以看出其频谱和AM调制信号类似,但无中心处一冲激信号。所以在解调时基本上是和AM相似,都是相干解调。
2.3.单边带调幅调制(SSB)
单边带调幅信号只是取双边带DSB信号的一半带宽的信号,因此DSB-SC信号可以看作是下边带信号(LSSB)与上边带信号(USSB)的叠加。
有两种方法可以得到SSB信号:
滤波法
相移法
我所用的是滤波法;因此滤波法就不介绍了,留给各位自己去看书。
一,调制模型
此时,要产生的是上边带信号或者下边带信号取决于滤波器。如图2.9所示,此时用的是低通滤波器,所以产生的是下边带信号。因此单边带的波形表达式为: 6. s S S B ( t ) = A c m ( t ) c o s 2 π f c t ∗ h S S B ( t ) 6.\,\,s_{SSB}(t)=A_cm(t)cos2\pi f_ct*h_{SSB}(t) 6.sSSB(t)=Acm(t)cos2πfct∗hSSB(t)
而其傅里叶变换为: 7. S S S B ( f ) = A c 2 [ M ( f − f c ) + M ( f + f c ) ] H S S B ( f ) 7.\,\,S_{SSB}(f)=\frac{A_c}{2}[M(f-f_c)+M(f+f_c)]H_{SSB}(f) 7.SSSB(f)=2Ac[M(f−fc)+M(f+fc)]HSSB(f)
同时,对于解调来说,还是用的相干解调法
3.抗噪声性能理论分析
3.1.AM调制
由式1得,
8.
s
A
M
2
(
t
)
‾
=
A
c
2
2
+
A
c
2
2
m
2
(
t
)
‾
+
A
c
2
m
2
(
t
)
‾
8.\,\, \overline{s^2_{AM}(t)}=\frac{A^2_c}{2}+\frac{A^2_c}{2}\overline{m^2(t)}+A^2_c\overline{m^2(t)}
8.sAM2(t)=2Ac2+2Ac2m2(t)+Ac2m2(t)
我们一般假定m(t)m(t)m(t)为纯交流信号,即
m
(
t
)
‾
\overline{m(t)}
m(t)=0,因此有AM信号的平均功率为:
9.
P
A
M
=
P
c
+
P
m
=
A
c
2
2
+
A
c
2
2
m
2
(
t
)
‾
9.\,\,P_{AM}=P_c+P_m=\frac{A^2_c}{2}+\frac{A^2_c}{2}\overline{m^2(t)}
9.PAM=Pc+Pm=2Ac2+2Ac2m2(t)
对于噪声来说,带宽
B
T
B_T
BT=2B,(B为m(t)的带宽)
所以功率为:
10.
N
i
n
=
n
0
B
=
2
n
0
B
10.\,\,N_in=n_0B=2n_0B
10.Nin=n0B=2n0B
输入信噪比:
11.
(
S
N
)
i
n
=
A
c
2
2
[
1
+
P
m
]
2
n
0
B
11.\,\,(\frac{S}{N})_{in}=\frac{\frac{A^2_c}{2}[1 +P_m]}{2n_0B}
11.(NS)in=2n0B2Ac2[1+Pm]
同理可得输出信噪比:
12.
(
S
N
)
o
u
t
=
A
c
2
P
m
2
n
0
B
12.\,\,(\frac{S}{N})_{out}=\frac{A^2_cP_m}{2n_0B}
12.(NS)out=2n0BAc2Pm
二者之比
G
A
M
G_{AM}
GAM为:
2
P
m
1
+
P
m
\frac{2P_m}{1+P_m}
1+Pm2Pm
3.2.DSB-SC调制
同理如AM相干解调系统,DSB信号也类似。对于噪声来说,完全是和AM解调一样的。对DSB信号本身,根据式4可得:
P
D
S
B
=
1
2
A
c
2
m
2
(
t
)
‾
P_{DSB}=\frac{1}{2}A^2_c\overline{m^2(t)}
PDSB=21Ac2m2(t)
输入信噪比:
13.
(
S
N
)
i
n
=
1
2
.
A
c
2
P
m
2
n
0
B
13.\,\,(\frac{S}{N})_{in}=\frac{1}{2}.\frac{A^2_cP_m}{2n_0B}
13.(NS)in=21.2n0BAc2Pm
同理可得输出信噪比:
14.
(
S
N
)
o
u
t
=
A
c
2
P
m
2
n
0
B
14.\,\,(\frac{S}{N})_{out}=\frac{A^2_cP_m}{2n_0B}
14.(NS)out=2n0BAc2Pm
二者之比
G
A
M
G_{AM}
GAM为:
2
2
2
3.3.SSB调制
对于SSB系统,可以和DSB系统进行横向对比,因为SSB信号乃是DSB信号去掉一个边带得到的。所以
P
s
=
P
D
S
B
2
P_s=\frac{P_{DSB}}{2}
Ps=2PDSB,而噪声也因为滤掉了一个边带,功率变为原来的一半为:
n
0
B
n_0B
n0B
所以输入信噪比:
15.
(
S
N
)
i
n
=
A
c
2
P
m
4
n
0
B
15.\,\,(\frac{S}{N})_{in}=\frac{A^2_cP_m}{4n_0B}
15.(NS)in=4n0BAc2Pm
同理可得输出信噪比:
16.
(
S
N
)
o
u
t
=
A
c
2
P
m
4
n
0
B
16.\,\,(\frac{S}{N})_{out}=\frac{A^2_cP_m}{4n_0B}
16.(NS)out=4n0BAc2Pm
二者之比
G
A
M
G_{AM}
GAM为:
1
1
1
4.仿真实现与仿真结果
4.1 AM调制
1.基础设置
%----------基础设置
T_start=0;%开始时间
T_stop=0.5;%截止时间
T=T_stop-T_start;%仿真持续时间
T_sample=1/1000;%采样间隔
f_sample=1/T_sample; % 采样速率
N_sample=T/T_sample;% 采样点数
fm=10;%调制信号频率
fc=100;%载波频率
n=0:N_sample;
2.调制与解调
%-----AM调制
mt=cos(2*pi*fm*n*T_sample);
ct=cos(2*pi*fc*n*T_sample);
st=(1+mt).*ct;
figure(1);
subplot(2,1,1);
plot(n*T_sample,mt);
title('m(t)');
subplot(2,1,2);
plot(n*T_sample,st);
title('s(t)');
f_res=f_sample/N_sample;%频率分辨率
f_max=f_res*N_sample/2;%最大频率
F=abs(fft(mt));
F_rearrange=[F(N_sample/2+1:N_sample-1),F(1:N_sample/2)];
figure(2);
subplot(2,1,1);
plot((-N_sample/2+1:N_sample/2-1)*f_res,F_rearrange(1:N_sample-1));
axis([-200 200 0 3000]);
F=abs(fft(st));
S_rearrange=[F(N_sample/2+1:N_sample-1),F(1:N_sample/2)];
subplot(2,1,2);
plot((-N_sample/2+1:N_sample/2-1)*f_res,S_rearrange(1:N_sample-1));
axis([-200 200 0 3000]);
%-----------解调
md=st.*ct;
m0=conv(md,AMNum);
F=abs(fft(mt));
F_rearrange=[F(N_sample/2+1:N_sample-1),F(1:N_sample/2)];
figure(3);
subplot(2,1,1);
plot((-N_sample/2+1:N_sample/2-1)*f_res,F_rearrange(1:N_sample-1));
axis([-200 200 0 3000]);
F=abs(fft(m0));
F_rearrange=[F(N_sample/2+1:N_sample-1),F(1:N_sample/2)];
subplot(2,1,2);
plot((-N_sample/2+1:N_sample/2-1)*f_res,F_rearrange(1:N_sample-1));
axis([-200 200 0 3000]);
figure(4);
subplot(2,1,1);
plot(n*T_sample,mt);
title('基带信号');
subplot(2,1,2);
nn=0:5633;
plot(nn*T_sample,m0);
title('解调信号');
运行结果如下:

3.噪声
%---------噪声
noise_i=wgn(1,length(st),-33);
noise=conv(noise_i,noiseNum);
PSD_Noise_i=abs(fft(noise)).^2*T_sample/T/f_sample;
figure(5);
f_res=f_sample/length(noise);%频率分辨率
f_max=f_res*length(noise)/2;%最大频率
F1_rearrange=[PSD_Noise_i(length(noise)/2+1:length(noise)-1),PSD_Noise_i(1:length(noise)/2)];
subplot(2,1,1);
plot((-length(noise)/2+2:length(noise)/2-2)*f_res,F1_rearrange(1:length(noise)-3));
title('PSD-Noise-i');
P_noise_i=sum(PSD_Noise_i)/length(PSD_Noise_i)*f_sample;
P_in=P_st/P_noise_i;
ndt=noise.*c1lt;
not=conv(ndt,AMNum);
PSD_Noise_o=abs(fft(not)).^2*T_sample/T/f_sample;
F1_rearrange=[PSD_Noise_o(length(noise)/2+1:length(noise)-1),PSD_Noise_o(1:length(noise)/2)];
subplot(2,1,2);
plot((-length(noise)/2+2:length(noise)/2-2)*f_res,F1_rearrange(1:length(noise)-3));
P_not=sum(PSD_Noise_o)/length(PSD_Noise_o)*f_sample;
P_out= P_m0/P_not;
G=P_out/P_in;
disp('G_(AM)=');
disp(G);
结果如下:
因为
G
A
M
G_{AM}
GAM为:
2
P
m
1
+
P
m
\frac{2P_m}{1+P_m}
1+Pm2Pm
且
m
(
t
)
=
c
o
s
2
π
f
m
t
m(t)=cos2\pi f_mt
m(t)=cos2πfmt,由此可得
P
m
=
1
2
P_m=\frac{1}{2}
Pm=21,所以
G
A
M
G_{AM}
GAM大概约等于0.67;
仿真结果为0.53.
可能是由于高斯白噪声的随机性,和滤波器做的不够好导致形成的误差。
4.2.DSB-SC调制
1.基础设置
T_start=0;%开始时间
T_stop=0.5;%截止时间
T=T_stop-T_start;%仿真持续时间
T_sample=1/1000;%采样间隔
f_sample=1/T_sample; % 采样速率
N_sample=T/T_sample;% 采样点数
2.调制
n=0:N_sample;
m=cos(2*pi*10*n*T_sample);
figure(1);
dsb=m.*cos(2*pi*100*n*T_sample);
subplot(211);
plot(n*T_sample,m);title('m(t)');
subplot(212);
plot(n*T_sample,dsb);title('Sdsb(t)');
figure(2);
f_res=f_sample/N_sample;%频率分辨率
f_max=f_res*N_sample/2;%最大频率
F=abs(fft(m));
F_rearrange=[F(N_sample/2+1:N_sample-1),F(1:N_sample/2)];
subplot(211);
plot((-N_sample/2+1:N_sample/2-1)*f_res,F_rearrange(1:N_sample-1));
F=abs(fft(dsb));
F_rearrange=[F(N_sample/2+1:N_sample-1),F(1:N_sample/2)];
subplot(212);
plot((-N_sample/2+1:N_sample/2-1)*f_res,F_rearrange(1:N_sample-1));
3.解调
%解调
nn=0:5633;
mm=2*dsb.*cos(2*pi*100*n*T_sample);
mm=conv(mm,DSBNum);
figure(3);
subplot(211);plot(n*T_sample,m);title('基带信号');
subplot(212);plot(nn*T/564,mm);title('解调信号');
figure(4);
F=abs(fft(m));
F_rearrange=[F(N_sample/2+1:N_sample-1),F(1:N_sample/2)];
subplot(211);
plot((-N_sample/2+1:N_sample/2-1)*f_res,F_rearrange(1:N_sample-1));
axis([-200 200 0 3000]);
F=abs(fft(mm));
F_rearrange=[F(N_sample/2+1:N_sample-1),F(1:N_sample/2)];
subplot(212);
plot((-N_sample/2+1:N_sample/2-1)*f_res,F_rearrange(1:N_sample-1));
axis([-200 200 0 3000]);
4.仿真解调结果
结果如下:
理论上
G
D
S
B
G_{DSB}
GDSB=2,仿真结果为2.2312.
可能是由于高斯白噪声的随机性,和滤波器做的不够好导致形成的误差。
分析:
与AM系统相类似,调制过程即为频谱搬移的过程,且未产生新的频率分量,而相干解调后得出的波形与频谱都与原基带信号有一定的差异,而频谱图则误差较大只包含了一半的冲击信号。这是因为仿真所用滤波器只有正频率,所以只有一半,导致失真。
4.3.SSB调制
1.基础设置
T_start=0;%开始时间
T_stop=1;%截止时间
T=T_stop-T_start;%仿真持续时间
T_sample=1/1000;%采样间隔
f_sample=1/T_sample; % 采样速率
N_sample=T/T_sample;% 采样点数
2.调制与解调
n=0:N_sample;
nn=0:1063;
m=cos(2*pi*10*n*T_sample);
dsb=m.*cos(2*pi*100*n*T_sample);
ssb=conv(dsb,nnumm);
subplot(211);
plot(n*T_sample,m);title('m(t)');
subplot(212);
plot(nn*T/1064,ssb);title('Sssb(t)');
figure;
f_res=f_sample/N_sample;%频率分辨率
f_max=f_res*N_sample/2;%最大频率
F=abs(fft(dsb));
F_rearrange=[F(N_sample/2+1:N_sample-1),F(1:N_sample/2)];
subplot(211);
plot((-N_sample/2+1:N_sample/2-1)*f_res,F_rearrange(1:N_sample-1));
F=abs(fft(ssb));
F_rearrange=[F(N_sample/2+1:N_sample-1),F(1:N_sample/2)];
subplot(212);
plot((-N_sample/2+1:N_sample/2-1)*f_res,F_rearrange(1:N_sample-1));
nnnn=0:1063;
nnn=0:1126;
mm=4*ssb.*cos(2*pi*100*nnnn*T/1063);%解调
mm=conv(mm,nnumm);
figure;
subplot(211);plot(n*T_sample,m);title('基带信号');
subplot(212);plot(nnn*T/1127,mm);title('解调信号');
4.仿真结果
理论上
G
S
S
B
G_{SSB}
GSSB=1,仿真结果为0.9799.
可能是由于高斯白噪声的随机性,和滤波器做的不够好导致形成的误差。
由此,可以看出SSB调制与解调与DSB基本一模一样,只是差了一个边带的问题,不过也正是由于这个问题就导致二者的增益比恰好是 1 2 \frac{1}{2} 21
5.小结
通过本次的仿真实验可以得出在AM、DSB-SC、SSB这三个系统中DSB-SC的解调增益最大且为定值2,而SSB系统的解调增益也为定值1,可见,DSB-SC系统的抗干扰能力较SSB系统更强,而AM相干解调系统的解调增益不为定值,且其大小随着基带信号功率的变化而变化但小于2,即DSB-SC系统的抗干扰能力最强,AM系统的抗干扰能力与基带信号的功率相关,且功率越大抗干扰能力越强,SSB系统的抗干扰能力为DSB-SC系统的一半。
6.参考文献
[1].现代通信原理5.3: 窄带高斯白噪声
[2].模拟幅度调制系统抗干扰性能仿真分析[模板]
[3].现代通信原理6.1 常规调幅调制(AM)与抑制载波双边带(DSB-SC)调制
[4].现代通信原理6.2:单边带(SSB)调制