P2568 GCD(莫比乌斯反演)

题目传送门

题意:

给你一个正整数 n ( 1 ≤ n ≤ 1 0 7 ) n(1\le n\le10^7) n(1n107),求出满足 1 ≤ x ≤ n , 1 ≤ y ≤ n , g c d ( x , y ) ∈ p r i m e 1\le x \le n,1 \le y \le n,gcd(x,y)∈prime 1xn,1yngcd(x,y)prime x , y x,y x,y的对数。

思路一:莫比乌斯反演

a n s = ∑ i = 1 n ∑ j = 1 n [ g c d ( i , j ) ∈ p r i m e ] = ∑ p ∈ p r i m e ∑ i = 1 n ∑ j = 1 n [ g c d ( i , j ) = p ] = ∑ p ∈ p r i m e ∑ i = 1 ⌊ n p ⌋ ∑ j = 1 ⌊ n p ⌋ [ g c d ( i , j ) = 1 ] = ∑ p ∈ p r i m e ∑ i = 1 ⌊ n p ⌋ ∑ j = 1 ⌊ n p ⌋ ∑ d ∣ ( i , j ) μ ( d ) = ∑ p ∈ p r i m e ∑ d = 1 ⌊ n p ⌋ μ ( d ) ⌊ ⌊ n p ⌋ d ⌋ ∗ ⌊ ⌊ n p ⌋ d ⌋ \begin{aligned}\\ ans&=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}[gcd(i,j)∈prime]\\ &=\sum\limits_{p∈prime}\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}[gcd(i,j)=p]\\ &=\sum\limits_{p∈prime}\sum\limits_{i=1}^{\lfloor \frac{n}{p}\rfloor}\sum\limits_{j=1}^{\lfloor \frac{n}{p}\rfloor}[gcd(i,j)=1]\\ &=\sum\limits_{p∈prime}\sum\limits_{i=1}^{\lfloor \frac{n}{p}\rfloor}\sum\limits_{j=1}^{\lfloor \frac{n}{p}\rfloor}\sum\limits_{d|(i,j)}\mu(d)\\ &=\sum\limits_{p∈prime}\sum\limits_{d=1}^{\lfloor \frac{n}{p}\rfloor}\mu(d){\lfloor \frac{\lfloor \frac{n}{p}\rfloor}{d}\rfloor}*{\lfloor \frac{\lfloor \frac{n}{p}\rfloor}{d}\rfloor} \end{aligned} ans=i=1nj=1n[gcd(i,j)prime]=pprimei=1nj=1n[gcd(i,j)=p]=pprimei=1pnj=1pn[gcd(i,j)=1]=pprimei=1pnj=1pnd(i,j)μ(d)=pprimed=1pnμ(d)dpndpn

质数的枚举次数可以用质数密度来估算,即 O ( n ln ⁡ x ) O(\cfrac{n}{\ln x}) O(lnxn),后面的式子用除法分块在 O ( n p ) O(\sqrt {\cfrac{n}{p}}) O(pn )的复杂度求,均摊下来, O ( 能 过 ) O(能过) O()

C o d e Code Code

// Author : ACfunhsl
// Time : 2021/5/17 14:13:11
#define int long long
const int N = 1e7+50;
const int inf = 0x3f3f3f3f;
const int mod = 1e9+7;
bool ok[N];
int p[N],cnt=0,mu[N];
void euler()
{
	mu[1] = 1;
	for(int i=2;i<N;i++)
	{
		if(!ok[i])
		{
			p[++cnt] = i;
			mu[i] = -1;	
		}
		for(int j=1;j<=cnt&&i*p[j]<N;j++)
		{
			ok[i*p[j]] = 1;
			if(i%p[j]==0)
			{
				mu[i*p[j]] = 0;
				break;
			}
			else mu[i*p[j]] = -mu[i];
		}
	}
	for(int i=1;i<N;i++)
		mu[i] += mu[i-1];
}
int k;
int cal(int n)
{
	int res = 0;
	n/=k;
	for(int l=1,r;l<=n;l=r+1)
	{
		r = n/(n/l);
		res += (n/l)*(n/l)*(mu[r] - mu[l-1]);
	}
	return res;
}
signed main()
{
	euler();
	int n;
	cin>>n;
	int res = 0;
	for(int i=1;i<=cnt&&p[i]<=n;i++)
	{
		k = p[i];
		res += cal(n);
	}
	cout<<res<<endl;
	return 0;
}

思路二:欧拉函数

a n s = ∑ i = 1 n ∑ j = 1 n [ g c d ( i , j ) ∈ p ] = ∑ p ∈ p r i m e ∑ i = 1 n ∑ j = 1 n [ g c d ( i , j ) = p ] = ∑ p ∈ p r i m e ∑ i = 1 ⌊ n p ⌋ ∑ j = 1 ⌊ n p ⌋ [ g c d ( i , j ) = 1 ] = ∑ p ∈ p r i m e ( ( 2 ∗ ∑ i = 1 ⌊ n p ⌋ ∑ j = 1 i [ g c d ( i , j ) = 1 ] ) − 1 ) = ∑ p ∈ p r i m e ( 2 ∗ ∑ i = 1 ⌊ n p ⌋ φ ( i ) − 1 ) \begin{aligned}\\ ans&=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}[gcd(i,j)∈p]\\ &=\sum\limits_{p∈prime}\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}[gcd(i,j)=p]\\ &=\sum\limits_{p∈prime}\sum\limits_{i=1}^{\lfloor \frac{n}{p}\rfloor}\sum\limits_{j=1}^{\lfloor \frac{n}{p}\rfloor}[gcd(i,j)=1]\\ &=\sum\limits_{p∈prime} \left(\left(2*\sum\limits_{i=1}^{\lfloor \frac{n}{p}\rfloor}\sum\limits_{j=1}^{i}[gcd(i,j)=1]\right)-1\right)\\ &=\sum\limits_{p∈prime}\left(2*\sum\limits_{i=1}^{\lfloor\frac{n}{p}\rfloor}φ(i)-1\right) \end{aligned} ans=i=1nj=1n[gcd(i,j)p]=pprimei=1nj=1n[gcd(i,j)=p]=pprimei=1pnj=1pn[gcd(i,j)=1]=pprime2i=1pnj=1i[gcd(i,j)=1]1=pprime2i=1pnφ(i)1

C o d e Code Code

// Author : ACfunhsl
// Time : 2021/5/17 14:13:11
#define int long long
const int N = 1e7+50;
const int inf = 0x3f3f3f3f;
const int mod = 1e9+7;
bool ok[N];
int p[N],cnt=0,phi[N];

void euler()
{
	phi[1] = 1;
	for(int i=2;i<N;i++)
	{
		if(!ok[i])
			p[++cnt] = i,phi[i] = i-1;
		for(int j=1;j<=cnt&&i*p[j]<N;j++)
		{
			ok[i*p[j]] = 1;
			if(i%p[j]==0)
			{
				phi[i*p[j]] = phi[i] * p[j];
				break;
			}
			else phi[i*p[j]] = phi[i] * phi[p[j]];
		}
	}
	for(int i=2;i<N;i++)
		phi[i] += phi[i-1];
}
signed main()
{
	euler();
	int n;
	cin>>n;
	int res = 0;
	for(int i=1;i<=cnt&&p[i]<=n;i++)
	{
		res += 2 * phi[n/p[i]] -1;
	}
	cout<<res<<endl;
	return 0;
}
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值