pytorch之dataset使用

本文详细介绍了如何使用PyTorch加载CIFAR10数据集,包括数据预处理、图像增强以及使用DataLoader。通过transforms.Compose实现数据转换,如归一化。同时,利用tensorboard进行数据可视化,为后续模型训练做好准备。
摘要由CSDN通过智能技术生成

前言:按照深度学习项目的流程,最初的步骤就是组织数据集,pytorch中提供了常用的深度学习图像数据集,cifar10,coco,imagenet等等,也提供了处理输入数据的工具DataLoader, transforms等工具,非常之方便。本篇将详细介绍使用pytorch加载、处理数据集,并使用nn.Module搭建简单cifar10图像分类模型。

之所以选择cifar10数据集,是因为它比较小,好操作,不要求大量资源。

1、数据集的加载

import torch.utils.data
import torch
import torchvision
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms

cifar_data = torchvision.datasets.CIFAR10('./data', train=False, transform=transforms.ToTensor(), download=True)
print(len(cifar_data), type(cifar_data))

target_classes = cifar_data.classes

使用torchvision中datasets加载对应数据集,需要指定数据集存放文件夹,下载训练集还是验证集,下载的图像是PIL类型的文件,可以在这一步进行类型转换为Tensor,并进行下载。对于数据加载这种I/O密集形任务,可设置num_workers

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值