TASK15积分运算

语法知识

差分与近似微分

在这里插入图片描述

微分运算

在这里插入图片描述

不定积分与定积分运算

在这里插入图片描述
在这里插入图片描述

数值积分

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

实战演练

差分与近似微分实例

在这里插入图片描述

>> t=1:10;
>> s=[2 6 12 20 30 42 56 72 90 110];
>> v=diff(s)./diff(t)

v =

     4     6     8    10    12    14    16    18    20

>> a=diff(v)./diff(t(1:9))

a =

     2     2     2     2     2     2     2     2

微分运算实例

在这里插入图片描述

>> syms x
>> y=x*sin(x)+15;
>> diff(y)
 
ans =
 
sin(x) + x*cos(x)
 
>> x=pi/4;
>> eval(ans)

ans =

    1.2625

在这里插入图片描述

>> syms x y
>> z=x*x+2*x*y-y*y-2*x
 
z =
 
x^2 + 2*x*y - 2*x - y^2
 
>> x1=diff(z,'x')
 
x1 =
 
2*x + 2*y - 2
 
>> y1=diff(z,'y')
 
y1 =
 
2*x - 2*y
 
>> x1=simplify(x1)
 
x1 =
 
2*x + 2*y - 2
 
>> yx=-x1/y1
 
yx =
 
-(2*x + 2*y - 2)/(2*x - 2*y)

不定积分与定积分运算实例

在这里插入图片描述

>> syms x a b
>>  y=exp(a*x)*sin(b*x)
 
y =
 
exp(a*x)*sin(b*x)
 
>> z=int(y,'x')
 
z =
 
-(exp(a*x)*(b*cos(b*x) - a*sin(b*x)))/(a^2 + b^2)

在这里插入图片描述

>> syms x
>> y=sqrt(1-sin(2*x))
 
y =
 
(1 - sin(2*x))^(1/2)
 
>> z=int(y,0,pi/2)
 
z =
 
2*2^(1/2) - 2
 
>> eval(z)

ans =

    0.8284

数值积分实例

在这里插入图片描述

>> x=0:pi/150:pi;
>> y=sin(x).^2;
>> z=sqrt(1/pi*pi/150*trapz(y))

z =

    0.7071

在这里插入图片描述

>> x=0:pi/20:pi;
>> y=sin(x)./(x.^3+3*x+5);
>> z=trapz(x,y)

z =

    0.1616

>> q=quad('sin(x)./(x.^3+3*x+5)',0,pi)

q =

    0.1620

在这里插入图片描述
在这里插入图片描述

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
MATLAB中的符号运算是为了得到更高精度的数值解。符号运算可以用于数学、物理学、力学等学科和工程应用中的问题。通过使用符号表达式,可以进行各种符号运算,如代数运算、微积分、方程求解等。符号表达式可以包含各种符号变量和运算符号,可以进行各种运算操作,如加减乘除、幂运算、函数调用等。在特定情况下,可以选择使用符号表达式进行运算,以获得更精确的结果。\[1\] 在MATLAB中,可以使用sym函数创建符号矩阵。通过这种方法,可以创建一个矩阵,其中的元素可以是任何不带等号的符号表达式。矩阵的元素之间可以用逗号或空格分隔,各行之间用分号分隔。创建符号矩阵后,可以对其进行各种运算操作,如矩阵乘法、矩阵加法等。\[2\] 在符号运算中,还可以使用equationsToMatrix函数将一组方程转化为系数矩阵和常数项矩阵。这个函数可以将一组方程和变量作为输入,返回系数矩阵和常数项矩阵。这样可以方便地进行方程求解和线性代数运算。\[3\] 此外,MATLAB还提供了ccode函数,可以将符号表达式转化为C语言代码。这个函数可以返回用于计算符号表达式的C语句段落,方便将符号运算的结果应用于其他编程环境。\[4\] 总之,MATLAB中的符号运算提供了一种处理符号表达式的方法,可以进行各种数学运算和方程求解。通过使用符号运算,可以获得更高精度的数值解,并且可以方便地进行符号表达式的转化和处理。 #### 引用[.reference_title] - *1* *2* [MATLAB符号运算](https://blog.csdn.net/qq_63189739/article/details/124416950)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [MATLAB - 符号运算(持续更新)](https://blog.csdn.net/weixin_43455581/article/details/103572109)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值