习题6-5 使用函数验证哥德巴赫猜想

使用函数验证哥德巴赫猜想

本题要求实现一个判断素数的简单函数,并利用该函数验证哥德巴赫猜想:任何一个不小于6的偶数均可表示为两个奇素数之和。素数就是只能被1和自身整除的正整数。注意:1不是素数,2是素数。

函数接口定义:

int prime( int p );
void Goldbach( int n );

其中函数prime当用户传入参数p为素数时返回1,否则返回0;函数Goldbach按照格式“n=p+q”输出n的素数分解,其中p≤q均为素数。又因为这样的分解不唯一(例如24可以分解为5+19,还可以分解为7+17),要求必须输出所有解中p最小的解。
在这里插入图片描述
思路:prime函数实现,求出素数可以通过开根号和取余来判断

int prime(int p)
{
	if(p < 2)
		return 0;
	for(int i = 0; i <= sqrt(p); i++){
		if(p % i == 0)		//判断是否有其他因数
			return 0;
	}
	return 1;
}

思路:Goldbach函数实现,可将一部分素数存入数组,在逐个比较减去最小素数是否还为素数,是的话则返回一次后break

void Goldbach(int n)
{
	int nums[25];								//数组中存入素数
	int count = 0;								//计数及下标
	for(int i = 0; i < 100; i++){				//100以内的素数
		if(prmie(i) == 1){
			nums[count] = i;
			count++;
		}
	}
	
	int num;									//该数的另一个因数
	for(int i = 0; i < count; i++){
		num = n - nums[i]
		if(prime(num) == 1){					//判断另一个因数是否为素数
			printf("%d=%d+%d",n,nums[i],num);
			break;								//只需要打印一次
		}
	}
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值