使用自己的数据集跑few-shot object detection VOC格式数据

  1. 数据集准备:制作VOC格式数据集
  2. 使用官方划分文件划分种子
    官方代码
  3. 根据自己的需求修改划分代码:
    由于我只制作了VOC2007的,所以删掉了关于2012的
    同时由于我的xml文件里的folder不是当前的文件夹,所以做了适当修改
    (暂时还没试微调能不能用这个种子,所以并不确定是否正确,当前正在跑base)
year = 'VOC2007' # tree.find("folder").text
  1. 修改data下代码:
    1)builtin_meta.py文件
    在这里插入图片描述
    这部分修改为你自己的类别,由于不想改太多,所以3个split我全设置为一样的了。
    2)builtin.py文件,由于只有2007的,所以这里只删掉了2012相关的部分
    在这里插入图片描述
  2. 修改配置文件
    修改类别,如果data只有2007的,需要删掉2012的
    在这里插入图片描述
    改完之后根据操作训练就好,base训练可以成功,微调还未尝试
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值