持续更新中。。。。。
2024.07.28第一次更新
工科生总结一下从小学到大学本科学过的数学内容。
第一部分 代数学
代数是研究数、数量、关系、结构与代数方程的数学分支。初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。代数的研究对象不仅是数字,而是各种抽象化的结构。例如整数集作为一个带有加法、乘法和序关系的集合就是一个代数结构。在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。常见的代数结构类型有群、环、域、模、线性空间等。
1.1 代数学的发展
最初出现的是算术。算术一般就是自然数、正分数的四则运算,主要通过计数、度量来引入一些简单的应用问题。
初等代数是算术的演变和推广。主要讨论方程,如何把实际中的数量关系表达为代数式,根据等量关系列出方程。代数式包括整式、分式和根式。代数式可以进行四则运算,以及乘方和开方,服从基本运算定律。并且数域扩充到了有理数,后来进一步的扩充到了实数和复数。书等代数主要有两个方向:未知数更多的一次方程组;未知数次数更高的高次方程。
高等代数在初等代数的两个方向上进一步发展出许多分支,在大学里学的线性代数就是其中一个分支。高等代数引入集合、向量、向量空间、矩阵、行列式等概念。同时引入群论、环论和域论在内的代数系统。
抽象代数。
1.2
第二部分 几何学
第三部分 分析学
以微积分方法为基本工具,以函数(映射、关系等更丰富的内涵)为主要研究对象,以极限为基本思想的众多数学经典分支及其现代拓展的统称,简称分析。
参考: