一整只烧鹅价格=烧鹅上庄价格+烧鹅下庄价格这个关系不因货币变掉而变

趁看GH在Risk.net发表的有关quanto skew文章的契机写这篇文章介绍衍生品定价的基本理论。

我们从大家都会的一则公式开始:
S 0 = ∑ S T ⋅ D T ⋅ P {S_0} = \sum {S_T\cdot D_T\cdot \mathbb{P}} S0=STDTP

其中 S T S_T ST是未来价格, D T D_T DT是折现系数, P \mathbb{P} P是概率。引入概率就说明未来价格是可以是不确定的,折现系数也可以。金融理论中常把 D T ⋅ P D_T\cdot \mathbb{P} DTP合在一起叫做Arrow-Debreu证券现在的价格,这是一个在未来指定时刻当且仅当特定条件发生时才支付1个计价单位的资产。
现在我们把折现率 D D D具体化成一个资产的价格演化: D T = P 0 P T . D_T=\frac{P_0}{P_T}. DT=PTP0.并把 D T D_T DT S T S_T ST联系在一起看,剥离 P \mathbb{P} P使其可以完全扮演概率。

S = S T S 0 ⋅ D T ⋅ P \mathbb{S}=\frac{S_T}{S_0}\cdot D_T \cdot \mathbb{P} S=S0STDTP,则 ∑ S = 1 \sum \mathbb{S}=1 S=1。如果 S S S属于那种价格恒正的资产,那么 S \mathbb{S} S也恒正, S \mathbb{S} S就可以当作概率来用。

现在两个概率之间的关系是
S = S T S 0 ⋅ P 0 P T P = P 0 S 0 ⋅ S T P T P \mathbb{S}=\frac{S_T}{S_0}\cdot \frac{P_0}{P_T}\mathbb{P}=\frac{P_0}{S_0}\cdot \frac{S_T}{P_T}\mathbb{P} S=S0STPTP0P=S0P0PTSTP
或者
S P = S T / S 0 P T / P 0 . \frac{\mathbb{S}}{\mathbb{P}}=\frac{S_T/S_0}{P_T/P_0}. PS=PT/P0ST/S0.

由于 P 0 P_0 P0是现在就已知的价格,最初那个式子可重新写为等价形式
S 0 P 0 = ∑ S T P T P . \frac{S_0}{P_0}=\sum{\frac{S_T}{P_T}\mathbb{P}}. P0S0=PTSTP.

这是一个意义更广泛的形式。但在作进一步讨论之前,我们先把形式连续化。给定一个 T T T时刻的微分态 d ω d\omega dω T T T时刻 ( ω , ω + d ω ) (\omega,\omega+d\omega) (ω,ω+dω)上的Arrow-Debreu证券在0时刻的价格密度为 a ω a_\omega aω,用这个密度可以写出价格微分 a ω d ω = D T ( ω ) P ( d ω ) = P 0 P T P ( d ω ) = P 0 P T d P . a_\omega d\omega=D_T(\omega)\mathbb{P}({d\omega})=\frac{P_0}{P_T}\mathbb{P}({d\omega})=\frac{P_0}{P_T}d\mathbb{P}. aωdω=DT(ω)P(dω)=PTP0P(dω)=PTP0dP.
马上有
S 0 P 0 = ∫ S T P T d P = E P [ S T P T ] \frac{S_0}{P_0}=\int{\frac{S_T}{P_T}d\mathbb{P}}=\mathbb{E}^{\mathbb{P}}\left[{\frac{S_T}{P_T}}\right] P0S0=PTSTdP=EP[PTST]
俨然 P P P在这里扮演计价单位,比如1元人民币,能按无风险利率增值。
灵活使用这些关系可以将计价资产 P P P换成 N N N:
S 0 N 0 = P 0 N 0 E P [ S T N T N T P T ] = E N [ S T N T ] \frac{S_0}{N_0}=\frac{P_0}{N_0}\mathbb{E}^\mathbb{P}\left[{\frac{S_T}{N_T}}\frac{N_T}{P_T}\right]=\mathbb{E}^\mathbb{N}\left[{\frac{S_T}{N_T}}\right] N0S0=N0P0EP[NTSTPTNT]=EN[NTST]这是因为前面任何 ( S , S ) (S,\mathbb{S}) (S,S)都可以直接换成 ( N , N ) (N,\mathbb{N}) (N,N), 所以有了 N ( d ω ) = P 0 N 0 ⋅ N T P T P ( d ω ) \mathbb{N}(d\omega)=\frac{P_0}{N_0}\cdot\frac{N_T}{P_T}\mathbb{P}(d\omega) N(dω)=N0P0PTNTP(dω). 纯形式上注意到 P \mathbb{P} P换成 N \mathbb{N} N时期望内(远)外(近)都要乘以一个旧计价资产在新计价单位下的价格。

更简单的推法如下:求 N \mathbb{N} N使得 S 0 P 0 = ∑ S T P T P \frac{S_0}{P_0}=\sum{\frac{S_T}{P_T}\mathbb{P}} P0S0=PTSTP S 0 N 0 = ∑ S T N T N \frac{S_0}{N_0}=\sum{\frac{S_T}{N_T}\mathbb{N}} N0S0=NTSTN同时成立。显然只要通过 S 0 S_0 S0建立等式并对两边差分就有 P 0 P T P = N 0 N T N . \frac{P_0}{P_T}\mathbb{P}=\frac{N_0}{N_T}\mathbb{N}. PTP0P=NTN0N.

现在我们思考这些简单代数结论后面的几何图像。概率里求期望和力学里求质心是等价概念。概率密度对应质量密度,随机变量对应质点位移。如果对每个质点位移作了一个放缩,只要对每点的密度作一个反缩放(密度缩放后便不是密度了),就能保持位移和密度的乘积不变,也就保持了质心不变。这就是期望里面在做的事情。期望外面乘的那个比例是因为质心并非不动。而为了保持形式不变,可以把内外两个比例都乘到原密度上,乘后发现积是一个新密度。注意三点:1. 这个方法对局部积分也是成立的。2. 这个方法没有对概率分布作假设,适用于所有分布。3. 一个以 S S S为计价单位的资产价格是 S \mathbb{S} S下的鞅(martingale),同时将计价单位换成 N N N,将测度换成 N \mathbb{N} N可以使新计价单位下资产价格仍旧保持鞅性,称 N \mathbb{N} N为计价单位 N N N的等价鞅测度。

例1 (Geman, El Karoui, and Rochet, 1995). 给欧式看涨期权 ( S T − K ) + (S_T-K)^+ (STK)+定0时刻的价格。
取局部 A = { ω : S T ( ω ) > K } A=\{\omega:S_T(\omega)>K\} A={ω:ST(ω)>K},则 ( S T − K ) + = S T 1 A − K 1 A (S_T-K)^+=S_T1_A-K1_A (STK)+=ST1AK1A。我们用ZCB的价格 B B B作计价单位, B B B的等价鞅测度 B \mathbb{B} B又叫远期测度(Forward measure)。 B B B的特点是 B T = 1 B_T=1 BT=1, B 0 = e − r T B_0=e^{-rT} B0=erT。现在进行定价:
c 0 B 0 = E B [ S T 1 A ] − E B [ K 1 A ] \frac{c_0}{B_0}=\mathbb{E}^{\mathbb{B}}\left[S_T1_A\right]-\mathbb{E}^{\mathbb{B}}\left[K1_A\right] B0c0=EB[ST1A]EB[K1A]

对上面的第一个期望我们将再换一次计价单位到 S S S,第二个直接化简为 K B [ A ] K\mathbb{B}\left[A\right] KB[A]
E B [ S T 1 A ] = S 0 B 0 E S [ 1 A ] = S 0 B 0 S [ A ] . \mathbb{E}^{\mathbb{B}}\left[S_T1_A\right]=\frac{S_0}{B_0}\mathbb{E}^{\mathbb{S}}\left[1_A \right]=\frac{S_0}{B_0}\mathbb{S}\left[A \right]. EB[ST1A]=B0S0ES[1A]=B0S0S[A].于是 c 0 = S 0 S [ A ] − B 0 K B [ A ] . c_0=S_0\mathbb{S}\left[A \right] - B_0K\mathbb{B}\left[A\right]. c0=S0S[A]B0KB[A].接下来只要计算两个概率: B [ A ] \mathbb{B}\left[A\right] B[A] S [ A ] \mathbb{S}\left[A\right] S[A]

先算 B [ A ] \mathbb{B}\left[A\right] B[A],利用 F = S B F=\frac{S}{B} F=BS现在是鞅: d F F = σ d W \frac{dF}{F}=\sigma dW FdF=σdW, d l n F = − σ 2 2 d t + σ d W d\mathrm{ln}F=-\frac{\sigma^2}{2}dt+\sigma dW dlnF=2σ2dt+σdW l n F T K ∼ N ( l n F 0 K − σ 2 2 T , σ 2 T ) \mathrm{ln}\frac{F_T}{K}\sim N(\mathrm{ln}\frac{F_0}{K}-\frac{\sigma^2}{2}T,\sigma^2 T) lnKFTN(lnKF02σ2T,σ2T),于是 B [ S T > K ] = B [ l n F T K > 0 ] = Φ ( l n F 0 K − σ 2 2 T σ T ) . \mathbb{B}\left[S_T>K\right]=\mathbb{B}\left[\mathrm{ln}\frac{F_T}{K}>0\right]=\Phi\left(\frac{\mathrm{ln}\frac{F_0}{K}-\frac{\sigma^2}{2}T}{\sigma\sqrt{T}}\right). B[ST>K]=B[lnKFT>0]=Φ(σT lnKF02σ2T).

再算 S [ A ] \mathbb{S}\left[A\right] S[A],利用 Z = B S Z=\frac{B}{S} Z=SB现在是鞅: d Z Z = σ d W \frac{dZ}{Z}=\sigma dW ZdZ=σdW, d l n Z = − σ 2 2 d t + σ d W d\mathrm{ln}Z=-\frac{\sigma^2}{2}dt+\sigma dW dlnZ=2σ2dt+σdW l n ( Z T K ) ∼ N ( l n ( Z 0 K ) − σ 2 2 T , σ 2 T ) \mathrm{ln}(Z_TK)\sim N(\mathrm{ln}(Z_0K)-\frac{\sigma^2}{2}T,\sigma^2 T) ln(ZTK)N(ln(Z0K)2σ2T,σ2T),于是 S [ S T > K ] = S [ l n Z T K ≤ 0 ] = Φ ( F 0 K + σ 2 2 T σ T ) . \mathbb{S}\left[S_T>K\right]=\mathbb{S}\left[\mathrm{ln}Z_TK\leq0\right]=\Phi\left(\frac{\frac{F_0}{K}+\frac{\sigma^2}{2}T}{\sigma\sqrt{T}}\right). S[ST>K]=S[lnZTK0]=Φ(σT KF0+2σ2T).

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值