关于Pandas的数据填充

前言

在数据分析与预处理过程中,脏数据几乎不可避免,这直接影响到后续分析的准确性和可靠性。清洗数据中最常见的就是处理空值。Pandas DF的数据填充功能非常强大。本文介绍Pandas中常用的几种数据填充(也称为缺失值处理)方法,使数据清洗工作更加高效。

填充

fillna()是Pandas中最基础也是最灵活的填充缺失值方法。它允许你用特定的值、Series、DataFrame或前一个/后一个非空值来填充缺失值(NaN)。

常数填充


In [1]: import pandas as pd

In [2]: import numpy as np

In [3]: data = {'A': [1, 2, np.nan], 'B': [5, np.nan, np.nan], 'C': [1, 2, 3]}

In [4]:  df = pd.DataFrame(data)

In [5]: df
Out[5]:
     A    B  C
0  1.0  5.0  1
1  2.0  NaN  2
2  NaN  NaN  3

In [6]: df.fillna(0)
Out[6]:
     A    B  C
0  1.0  5.0  1
1  2.0  0.0  2
2  0.0  0.0  3

Series填充

可以使用一个Series对不同列使用不同的值进行填充, 具体如下:

fill_values = pd.Series([10, 20, 30], index=['A', 'B', 'C'])

In [12]: df
Out[12]:
     A    B  C
0  1.0  5.0  1
1  2.0  NaN  2
2  NaN  NaN  3

In [13]: df.fillna(fill_values)
Out[13]:
      A     B  C
0   1.0   5.0  1
1   2.0  20.0  2
2  10.0  20.0  3

附近值填充

  • 前向填充: 使用上一行的值

In [18]: df
Out[18]:
     A    B  C
0  1.0  5.0  1
1  2.0  NaN  2
2  NaN  NaN  3

In [19]: df.ffill()
Out[19]:
     A    B  C
0  1.0  5.0  1
1  2.0  5.0  2
2  2.0  5.0  3
  • 后向填充: 使用后一行的值

In [22]: data = {'A': [1, 2, np.nan], 'B': [5, np.nan, 88], 'C': [1, 2, 3]}

In [23]: df = pd.DataFrame(data)

In [24]: df
Out[24]:
     A     B  C
0  1.0   5.0  1
1  2.0   NaN  2
2  NaN  88.0  3

In [25]: df.bfill()
Out[25]:
     A     B  C
0  1.0   5.0  1
1  2.0  88.0  2
2  NaN  88.0  3
  • 同一行中指定列值进行填充

In [28]: df
Out[28]:
     A     B  C
0  1.0   5.0  1
1  2.0   NaN  2
2  NaN  88.0  3

In [29]: df['A']=df.apply(lambda row: row['C'] if pd.isnull(row['A']) else row['A'], axis=1)

In [30]: df
Out[30]:
     A     B  C
0  1.0   5.0  1
1  2.0   NaN  2
2  3.0  88.0  3

插值

插值法是一个非常有用的功能,通过插值进行填充可以保证一些时序数值相对合理和连续。这特别能够避免一些因为数据丢失原因产生的跳空出现。

线性插值

In [2]: data = {'A': [1, 2, np.nan, 4], 'B': [np.nan, 5, np.nan, 8]}

In [3]: df = pd.DataFrame(data)

In [4]: df
Out[4]:
     A    B
0  1.0  NaN
1  2.0  5.0
2  NaN  NaN
3  4.0  8.0

In [5]: df.interpolate()
Out[5]:
     A    B
0  1.0  NaN
1  2.0  5.0
2  3.0  6.5
3  4.0  8.0

时间序列插值

当df使用datetime作为索引时,支持基于时间的插值,如下代码给出了示例:


In [11]: date_index = pd.date_range(start='2024-06-25', periods=7, freq='D')

In [12]: dates_to_remove = pd.to_datetime(['2024-06-26', '2024-06-30'])

In [13]: date_index = date_index[~date_index.isin(dates_to_remove)]

In [14]: date_index
Out[14]:
DatetimeIndex(['2024-06-25', '2024-06-27', '2024-06-28', '2024-06-29',
               '2024-07-01'],
              dtype='datetime64[ns]', freq=None)

In [15]: data_ts = {'Value': [1, 2, np.nan, np.nan, 8]}

In [16]: pd.DataFrame(data_ts, index=date_index)
Out[16]:
            Value
2024-06-25    1.0
2024-06-27    2.0
2024-06-28    NaN
2024-06-29    NaN
2024-07-01    8.0


# 对比普通线性插值和时间序列插值
In [17]: pd.DataFrame(data_ts, index=date_index).interpolate()
Out[17]:
            Value
2024-06-25    1.0
2024-06-27    2.0
2024-06-28    4.0
2024-06-29    6.0
2024-07-01    8.0

In [18]: pd.DataFrame(data_ts, index=date_index).interpolate(method='time')
Out[18]:
            Value
2024-06-25    1.0
2024-06-27    2.0
2024-06-28    3.5
2024-06-29    5.0
2024-07-01    8.0

Pandas的插值函数基于scipy.interpolate.interp1d — SciPy v1.13.1 Manual, 同时也支持SciPy的几个‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘barycentric’, ‘polynomial等不同的插值类型。具体不同插值类型可以在遇到需要的时候,深入阅读文档研究,本文不在重复赘述。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值