Pandas 填充缺失值,填充单列

本文介绍了如何使用Pandas的fillna方法处理DataFrame中的缺失值。首先创建了一个包含NaN的DataFrame,并展示了缺失值的检查方法。接着,通过mean()和mode()函数分别演示了如何用平均值和众数填充单列的缺失值。最后,讲解了如何填充整个DataFrame的缺失值。了解这些技巧对于数据预处理至关重要。
摘要由CSDN通过智能技术生成

DataFrame.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)
官方链接


1:建立一个带有缺失值的data

import numpy as np
from numpy import nan
import pandas as pd
data=pd.DataFrame(np.arange(3,19,1).reshape(4,4),index=list('abcd'))
print(data)
data.iloc[0:2,0:3]=nan
print(data)
print(data.isnull().sum()) #查看缺失情况

在这里插入图片描述

2.填充单列

用均值填充:
在这里插入图片描述
inplace = True直接改变data值,如果不写的话需要在给序列赋一遍值如:

data[0] = data[0].fillna(data[0].mean())

用众数填充:
在这里插入图片描述
需要注意的是众数填充时mode()返回的是一个Series类型所以要加上索引



3.填充整个数列

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值