DataFrame.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)
官方链接
1:建立一个带有缺失值的data
import numpy as np
from numpy import nan
import pandas as pd
data=pd.DataFrame(np.arange(3,19,1).reshape(4,4),index=list('abcd'))
print(data)
data.iloc[0:2,0:3]=nan
print(data)
print(data.isnull().sum()) #查看缺失情况
2.填充单列
用均值填充:
inplace = True直接改变data值,如果不写的话需要在给序列赋一遍值如:
data[0] = data[0].fillna(data[0].mean())
用众数填充:
需要注意的是众数填充时mode()返回的是一个Series类型所以要加上索引