ComfyUI 基础教程(四):图生图基础流程(文生图进阶)

本文介绍了图生图的基础流程,该流程源于Latent Diffusion,结合了SD模型与UNet。流程包括图像压缩、扩散模型生成、解码器输出图像。图生图工作流涉及文本编码器、图像输入、调度算法等,通过控制噪声强度调节生成图像。与文生图相比,图生图利用了图像信息作为生成参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

下面这个图就是典型的1.5模型生成过程,SD的核心来源于Latent Diffusion这个工作。

SD在UNet中引入text condition来实现基于文本生成图像。它先采用一个autoencoder将图像压缩到latent空间。然后用扩散模型来生成图像的latents,最后送入autoencoder的decoder模块就可以得到生成的图像。

图生图的流程:

输入:图像 + prompt

输出:图像

这个流程的本身,就是加入了一个图像的参考。流程的本质就是让图像变成一个latent的输

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

行者AI视频

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值