并集、交集、差集、补集的概念是什么?

本文介绍了集合论中的基本概念:并集、交集、差集和补集。并集包含属于A或B的所有元素,交集则包含同时属于A和B的元素。差集是属于A但不属于B的元素集合,补集是属于全集U但不属于A的元素集合。此外,还提到了摩根定律,即两个集合交集的补集等于各自补集的并集,反之亦然。这些概念是理解集合论和数学基础的关键。
摘要由CSDN通过智能技术生成

本文为joshua317原创文章,转载请注明:转载自joshua317博客 并集、交集、差集、补集的概念是什么? - joshua317的博客

1 并集

记A,B是两个集合,以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B} 。

2 交集

记A,B是两个集合,以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}

3 差集

记A,B是两个集合,则所有属于A且不属于B的元素构成的集合,叫做集合A减集合B(或集合A与集合B之差),类似地,对于集合A、B,把集合{x∣x∈A,且x∉B}叫做A与B的差集。

4 补集

记A,U是两个集合,属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不属于A}。

5 扩展资料

摩根定律,又叫反演律,用文字语言可以简单的叙述为:两个集合的交集的补集等于它们各自补集的并集,两个集合的并集的补集等于它们各自补集的交集。

若集合A、B是全集U的两个子集,则以下关系恒成立:

(1)∁U(A∩B)=(∁UA)∪(∁UB),即“交之补”等于“补之并”;

(2)∁U(A∪B)=(∁UA)∩(∁UB),即“并之补”等于“补之交”

本文为joshua317原创文章,转载请注明:转载自joshua317博客 并集、交集、差集、补集的概念是什么? - joshua317的博客

Python中,可以使用集合(set)来进行交集并集差集补集的操作。 1. 交集:两个集合中共同存在的元素构成的新集合。可以使用`&`算符或者`intersection()`方法来实现。 示例代码: ``` set1 = {1, 2, 3} set2 = {2, 3, 4} intersection_set = set1 & set2 # 或者使用 intersection() 方法 # intersection_set = set1.intersection(set2) print(intersection_set) # 输出: {2, 3} ``` 2. 并集:两个集合中所有的元素构成的新集合。可以使用`|`运算符或者`union()`方法来实现。 示例代码: ```python set1 = {1, 2, 3} set2 = {2, 3, 4} union_set = set1 | set2 # 或者使用 union() 方法 # union_set = set1.union(set2) print(union_set) # 输出: {1, 2, 3, 4} ``` 3. 差集:第一个集合中存在,而第二个集合中不存在的元素构成的新集合。可以使用`-`运算符或者`difference()`方法来实现。 示例代码: ```python set1 = {1, 2, 3} set2 = {2, 3, 4} difference_set = set1 - set2 # 或者使用 difference() 方法 # difference_set = set1.difference(set2) print(difference_set) # 输出: {1} ``` 4. 补集:在全集中存在,但是不在指定集合中的元素构成的新集合。可以使用`^`运算符或者`symmetric_difference()`方法来实现。 示例代码: ```python set1 = {1, 2, 3} set2 = {2, 3, 4} complement_set = set1 ^ set2 # 或者使用 symmetric_difference() 方法 # complement_set = set1.symmetric_difference(set2) print(complement_set) # 输出: {1, 4} ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值