ZOJ 3675(Trim the Nails)

11 篇文章 0 订阅

题意:ZOJ 11月月赛,Robert需要剪指甲,但是他的指甲刀有缺陷,有些是剪不到的,

他的指甲刀形如是一个字符串,符号'.'代表指甲刀这处有缺陷这处的指甲不能修剪到,

符号'*'代表这处是完好的,这处的可以修剪到;如指甲刀**..**,要剪长度为6的指甲,

则剪出来的指甲(1代表该处指甲已修剪,0则没有)是110011,这需要再剪一次;

指甲刀可以左右移动,还可以翻转;


思路:BFS,DFS都可以,我用的是BFS+位运算,感觉位运算这东西还挺好玩的

就试用了一下,而且不用模拟他剪指甲,翻转和移动的过程,比较方便;做法是

将指甲钳进行翻转和移动剪指甲,将每次剪指甲的状态入队;这题难度不大,思路

很重要,思路清晰很快就能敲出来了;我做这题的时候,只是知道大概的思路,就

手忙脚乱的一阵猛敲,然后交上去各种WA,然后发现各种BUG;这坏毛病一定要

改了,不然到比赛的时候紧张起来就错漏百出了。。。

#include <cstdio>
#include <cstring>
#include <queue>
#include <math.h>
#define SIZE 30
using namespace std;

const int N = 1100000;
int dis[N], vis[N];
int x[] = {0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383,
32767, 65535, 131071, 262143, 524287, 1048575, 2097151};//这是长度为i已经剪好的指甲,判断用

//up是正面指甲钳,down是反面指甲钳 
int bfs(int up, int down, int n, int m){
	queue<int> p;
	p.push(0);
	dis[0] = 0, vis[0] = 1;
	while(!p.empty()){
		//st为当前指甲的状态 
		int st = p.front(), now, tt = up;
		p.pop();
		for(int j = 0;j < 2;j++,tt = down)	//正反两面交替 
			for(int i=0;i<=n;i++){
				//tp为当前不断移动的指甲钳 
				int tp=(tt >> i);      
				now = (tp | st);
				now = (now & ((1 << m) - 1));
				if(!vis[now]){
					dis[now] = dis[st] + 1;
					if((now & x[m]) == x[m])
						return dis[now];
					p.push(now);
					vis[now] = 1;
				}
			}
	}	
	return -1;
} 

int main(){
	int str[SIZE], n, m;
	while(~scanf("%d", &n)){
		char c;
		int i, j, up = 0,down = 0;
		memset(vis,0,sizeof(vis));
		getchar();
		for(i = 0;i < n;i++){
			scanf("%c", &c);
			c == '*'?str[i] = 1:str[i] = 0;
		}
		for(i = n - 1,j = 0;i >= 0;i--,j++)
			up += str[i] * (int)pow(2, j);
		for(i = 0;i < n;i++)
			down += str[i] * (int)pow(2, i);
		scanf("%d", &m);
		if(m > n){
			up = (up << m);
			down = (down << m);
			n += m;
		}
		int res = bfs(up, down, n, m);
		printf("%d\n", res);
	}
	return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值