【分享笔记】符尧:预训练、指令微调、对齐、专业化——论大语言模型能力的来源

分享时间:2023.2

模型家族

看模型要从演化家族来看,而不能单独看,很多人认为一些能力并不是RLHF激发出来的,而是本来的基础模型就有的。
在这里插入图片描述

scaling law和涌现能力

scaling law适用于很多方面(这里指语言的scaling law,不确定cv的),比如模型参数、指令类型数、指令下数据量等。如果横坐标是数据量级的话,干净的数据可以增加曲线斜率,但是依然符合scaling law。
涌现能力:当模型大小<10B时,很多能力没有涌现
在这里插入图片描述

模型不同阶段

分三个阶段,有的能力在预训练之后不能被直接观察到,sft时可以被观察到,如果这个能力在预训练可以直接观察到,sft可以变强。大模型:什么都能做什么都做不好,经过sft的小模型,模型六边形效果更好。sft是激发而不是赋予。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值