Unsupervised Image Super-Resolution using Cycle-in-Cycle Generative Adversarial Networks论文阅读

本文探讨了无监督学习如何通过Cycle-in-Cycle生成式对抗网络(CycleGAN)解决低分辨率图像的噪声和模糊问题。方法中,网络结构包括两个循环模型,分别处理LR到清晰LR和LR到HR的转换,通过对抗损失和循环一致性损失提升图像质量。
摘要由CSDN通过智能技术生成

Unsupervised Image Super-Resolution using Cycle-in-Cycle Generative Adversarial Networks论文阅读

1.存在的问题:
低分辨率图像作为输入时,由于噪声和模糊会进一步退化。这种复杂的设置使得有监督学习和准确的内核估计成为不可能。
2.解决方法:
采用无监督学习,使用没有配对数据,以生成式对抗网络(GAN)为基本组成部分,提出一种Cycle-in-Cycle的网络结构:(1)将带噪声和模糊的输入映射到一个无噪声的低分辨率空间。(2)利用预先训练好的深度模型对图像进行上采样。(3)对两个模块进行端到端微调,得到高分辨率的输出。
3.网络结构
![在这里插入图片描述](https://img-blog.csdnimg.cn/20210222232927601.png?x-oss-process=image/watermark,在这里插入图片描述
这是整个网络的框架,其中G1、G2和G3是生成器,SR是一个超分辨率网络。D1和D2是鉴别器。G1、G2和D1组成第一个LR-清晰LR的循环模型,将退化LR图像映射到清晰的LR图像。G1、SR、G3和D2构成第二个LR-HR的周期模型,将LR图像映射到HR图像。
3.1动机
超分辨问题接受低分辨率的图像并输出分辨率大得多的高分辨率图像。即是说超分辨问题要求输出的图像是高质量的,那么如果仅仅直接采用图像到图像的平移方法,首先需要对LR图像进行插值上采样,这也会放大噪声模式。如果直接使用现有的方法,如CycleGAN,不能去除这些放大的噪声,就会使得训练变得非常不稳定。
3.2几个重要的损失函数理解网络
在这里插入图片描述
(1)generator-adversarial loss:
指的是生成基础的清晰的低分辨率的过程损失。
在这里插入图片描述
(2)cycle consistency loss:
主要是为了保持输入和输出的一致性,使x’与输入x相同。
在这里插入图片描述
在这里插入图片描述
自我感觉(3)(4)不太重要,看原文
于是
于是第一个循环任务的损失就如(5)
在这里插入图片描述
在我看来(5-8)和上面差不多,主要是为了不同的任务罢了。

这是HR下的损失
在这里插入图片描述
这个图可以保存一下。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值