L Norms 范数

本文详细介绍了向量和矩阵的L范数,包括L0、L1、L2、L∞范数的概念及其应用。L0范数表示非零元素个数,L1范数用于区分接近零的元素,L2范数即欧几里得距离,L∞范数是最大元素的绝对值。在矩阵范数中,讨论了1-范数、2-范数(谱范数)、∞-范数和Frobenius范数,这些范数在不同场景下有着不同的意义和用途。

一、向量范数

在机器学习中,我们经常使用被称为范数( norm)的函数衡量向量大小。 L p L^p Lp 范数定义如下: ∥ x ∥ p = ( ∑ i ∣ x i ∣ p ) 1 p \|\boldsymbol{x}\|_p=\Big(\displaystyle\sum_i|x_i|^p\Big)^\frac{1}{p} xp=(ixip)p1其中 p ∈ R , p ≥ 1 p\in\mathbb{R},p\geq 1 pRp1

范数是将向量映射到非负值的函数。向量 x \boldsymbol{x} x 的范数衡量从原点到点 x \boldsymbol{x} x 的距离。更严格地说,范数是满足下列性质的任意函数:

  • f ( x ) = 0 ⇒ x = 0 f(\boldsymbol{x}) = 0 \Rightarrow \boldsymbol{x} = \boldsymbol{0} f(x)=0x=0
  • f ( x + y ) ≤ f ( x ) + f ( y ) f(\boldsymbol{x + y}) ≤ f(\boldsymbol{x}) + f(\boldsymbol{y}) f(x+y)f(x)+f(y)三角不等式( triangle inequality))
  • ∀   α ∈ R , f ( α x ) = ∣ α ∣ f ( x ) \forall\,\alpha\in\mathbb{R},f(\alpha\boldsymbol{x})=|\alpha|f(\boldsymbol{x}) αR,f(α
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值