Operator norm - 算子范数

在数学上,算子范数是一种度量某些线性算子"大小"的方法。形式上,它是在两个给定范数向量空间(normed vector spaces)之间的有界线性算子空间(bounded linear operators)上定义的范数。

介绍和定义

给定两个范数向量空间V和W(在相同的基(base field)上,实数R或者复数C),一个线性映射A ⇒ \Rightarrow B是连续的当且仅当存在一个实数c使得 ∥ A v ∥ ≤ c ∥ v ∥  for all  v ∈ V \|Av\| \leq c\|v\| \text{ for all } v \in V Avcv for all vV 左边的范数是W中的范数,右边的范数是V中的范数。直观上看来,连续算子(continuous operator)A永远不会将任意向量的长度增加超过c倍。因此,有界集在连续算子下的像(image)也是有界的。因为这个性质,连续线性算子也被称为有界算子( bounded operators)。为了"测量A的大小",似乎很自然的取数字c的下确界(infimum),使得上面的不等式对于所有的V中的v都成立。换句话说,我们通过“最大”情况下它在多大程度上"拉伸"向量的量来来度量A的“大小”。所以我们定义A的范式为 ∥ A ∥ o p = i n f { c ≥ 0 : ∥ A v ∥ ≤ c ∥ V ∥  for all  v ∈ V } \|A\|_{op} =inf\{ c \geq 0 : \|Av\| \leq c\|V\| \text{ for all } v \in V \} Aop=inf{c0:AvcV for all vV}由于所有此类c的集合都是封闭,非空并且从下面限定了边界,因此获得了下确界。
重要的是要记住,这个算子范数取决于范数向量空间V和W的范数的选择。

举例

每一个m x n的实矩阵对应一个从 R n R^n Rn R m R^m Rm的线性映射。适用于实向量空间的(向量)范数过剩的每对推导出一个适用于所有m×n矩阵的算子范数( Each pair of the plethora of (vector) norms applicable to real vector spaces induces an operator norm for all m-by-n matrices of real numbers); 这些推导出的范式构成了矩阵范式(matrix norms)的子集。
如果我们特别的选择 R n R^n Rn R m R^m Rm的欧几里得范数( Euclidean norm),那么矩阵A的矩阵范数是矩阵 A ∗ A A^{*}A AA最大特征值的平方根(其中 A ∗ A^* A表示A的共轭转置(conjugate transpose))。这相当于给A赋最大的奇异值(singular value)。
转到一个典型的无限维的例子,考虑序列空间 l 2 l^2 l2定义为: l 2 = { ( a n ) n ≥ 1 : a n ∈ C , ∑ n ∣ a n ∣ 2 < ∞ } l^2 = \{(a_n)_{n \geq 1}:a_n \in \mathcal C ,\sum\limits_{n}|a_n|^2 < \infty\} l2={(an)n1:anC,nan2<}这可以看作欧几里得空间 C n C^n Cn的一个无穷维的模拟。现在取一个有界序列 s = ( s n ) s=(s_n) s=(sn)。这个序列s是空间 l ∞ l^{\infty} l的一个元素,它的范式给定为 ∥ s ∥ ∞ = s u p n ∣ s n ∣ \|s\|_{\infty} = \mathop{sup}\limits_{n}|s_n| s=nsupsn通过简单的乘法定义 T s T_s Ts算子: ( a n ) → T s ( s n ⋅ a n ) (a_n) \mathop\rightarrow \limits^{T_s}(s_n \cdot a_n) (an)Ts(snan)
算子 T s T_s Ts被算子范数约束 ∥ T s ∥ o p = ∥ s ∥ ∞ \|T_s\|_{op} = \|s\|_{\infty} Tsop=s可以将讨论直接扩展到以下情况: l 2 {l^2} l2被一个一般 L p L^p Lp空间代替(P>1),并且 l ∞ l^{\infty} l L ∞ L^{\infty} L代替。

等价的定义

V ≠ { 0 } V \neq \{0\} V={0}时 ,我们可以证明下列的定义是等价的: ∥ A ∥ o p = i n f { c ≥ 0 : ∥ A v ∥ ≤ c ∥ v ∥  for all  v ∈ V } \|A\|_{op} = inf\{c \geq 0:\|Av\| \leq c\|v\| \text{ for all } v \in V\} Aop=inf{c0:Avcv for all vV} = s u p { ∥ A v ∥ : v ∈ V  with  ∥ v ∥ ≤ 1 } =sup\{\|Av\| :v \in V \text{ with } \|v\| \leq 1\} =sup{Av:vV with v1} = s u p { ∥ A v ∥ : v ∈ V  with  ∥ v ∥ = 1 } =sup\{\|Av\| :v \in V \text{ with } \|v\| = 1\} =sup{Av:vV with v=1} = s u p { ∥ A v ∥ ∥ v ∥ : v ∈ V  with  v ≠ 0 } =sup\{\frac{\|Av\|}{\|v\|}:v \in V \text{ with } v \neq 0\} =sup{vAv:vV with v=0} V = { 0 } V = \{0\} V={0}的时候,第三行和第四行是空的。

属性

算子范数确实是V和W之间所有有界算子空间上的一个范数。这意味着: ∥ A ∥ o p ≥ 0  and  ∥ A ∥ o p = 0  if and only if  A = 0 , \|A\|_{op} \geq 0 \text{ and } \|A\|_{op} = 0 \text{ if and only if } A = 0 \text{,} Aop0 and Aop=0 if and only if A=0, ∥ a A ∥ o p = ∣ a ∣ ∥ A ∥ o p  for every scalar a , \|aA\|_{op} = |a|\|A\|_{op} \text{ for every scalar a ,} aAop=aAop for every scalar a , ∥ A + B ∥ o p ≤ ∥ A ∥ o p + ∥ B ∥ o p . \|A+B\|_{op} \leq \|A\|_{op}+\|B\|_{op} \text{.} A+BopAop+Bop.下面的不等式是定义的直接结果 ∥ A v ∥ ≤ ∥ A ∥ o p ∥ v ∥  for every  v ∈ V \|Av\| \leq \|A\|_{op}\|v\| \text{ for every } v \in V AvAopv for every vV 算子范数也和算子的复合和乘法相容(The operator norm is also compatible with the composition, or multiplication, of operators):如果V,W和X是在三个同样基底下三个范数空间,并且 A : V → W  和  B : W → X A:V \rightarrow W \text{ 和 } B: W \rightarrow X A:VW  B:WX 是两个有界算子,那么它就是一个次乘范数(sub-multiplicative norm),即: ∥ B A ∥ o p ≤ ∥ B ∥ o p ∥ A ∥ o p \|BA\|_{op} \leq \|B\|_{op} \|A\|_{op} BAopBopAop
对于V上的有界算子,这意味着算子乘法是联合连续( jointly continuous)的。
从定义上看来,一个算子序列收敛到算子范数意味着它们在有界集合上均匀收敛(converge uniformly)。

常用的算子范数

有些常用的算子范数很容易计算,另外的一些是NP-hard的。除了NP-hard的范数,所有的范数都可以在 N 2 N^2 N2的操作中进行计算(对于N x N 矩阵),这其中不包含 l 2 − l 2 l_2 - l_2 l2l2范数(为了获得准确的答案它需要 N 3 N^3 N3次运算,或者更少如果你使用幂方法或者Lanczos迭代来进行近似.)
Computability of Operator Norms
伴随矩阵和转置矩阵可以按照如下方式进行计算。我们有对于任意的p,q,然后 ∥ A ∥ p → q = ∥ A ∗ ∥ q ′ → p ′ \|A\|_{p \rightarrow q} = \|A^*\|_{q^{'} \rightarrow p^{'}} Apq=Aqp,其中 p ′ , q ′ p^{'} , q^{'} p,q是p,q的霍尔德共轭(Hölder conjugate),即, 1 / p + 1 / p ′ = 1 和 1 / q + 1 / q ′ = 1 1/p + 1/p^{'} = 1 \text{和} 1/q+1/q^{'}=1 1/p+1/p=11/q+1/q=1 .

在希尔伯特空间(Hilbert space)上的算子

假定H是一个复数或者实数希尔伯特空间。如果A: H → H H \rightarrow H HH是一个有界线性算子,那么我们有 ∥ A ∥ o p = ∥ A ∗ ∥ o p \|A\|_{op}=\|A^*\|_{op} Aop=Aop ∥ A ∗ A ∥ o p = ∥ A ∥ o p 2 \|A^{*}A\|_{op} = \|A\|_{op}^2 AAop=Aop2 其中 A ∗ A^* A表示A的伴随矩阵(在具有标准内积的欧几里得希尔伯特空间,它对应于A的共轭转置)。
一般的,A的谱半径( spectral radius )被A的算子范数限定(bounded): ρ ( A ) ≤ ∥ A ∥ o p \rho(A) \leq \|A\|_{op} ρ(A)Aop 来明白等式为什么不会总是被满足,考虑在无限维情况下矩阵的约旦标准型(Jordan normal form),因为在超对角线上有非零实体,等式可能会被打破。准幂等算子(quasinilpotent operators)是上面的情况的一类,一个非零的准幂等算子A有谱{o}。所以当 ∥ A ∥ o p > 0 \|A\|_{op} > 0 Aop>0的时候有 ρ ( A ) = o \rho(A) = o ρ(A)=o
然而,当矩阵N是正规矩阵(normal)时,它的约旦标准型是对角的(up to unitary equivalence)。这是谱定理(spectral theorem)。在这种情况下很容易看出来 ρ ( N ) = ∥ N ∥ o p \rho(N)=\|N\|_{op} ρ(N)=Nop 这个公式在有些时候在给定边界算子A的情况下来计算算子范式:定义厄米算子(Hermitian operator ) B = A ∗ A B = A^*A B=AA ,确定它的谱半径,然后取平方根来获得A的算子范数。
H上的有界算子的空间,其拓扑(topology)由算子范数导出,是不可分离的。比如说,考虑希尔伯特空间 L 2 [ 0 , 1 ] L^2[0,1] L2[0,1]。对于 0 < t ≤ 1 0 < t \leq 1 0<t1,让 Ω t \Omega_t Ωt [ 0 , t ] [0,t] [0,t]上的特征函数( characteristic function ), P t P_t Pt Ω t \Omega_t Ωt给出的乘法算子(Multiplication operator),即 P t ( f ) = f ⋅ Ω t P_t(f)=f \cdot \Omega_t Pt(f)=fΩt 然后每个 P t P_t Pt是带有算子范数1有界算子,并且 ∥ P t − P s ∥ o p = 1 , for all  t ≠ s \|P_t - P_s\|_{op}=1 \text{, for all } t \neq s PtPsop=1, for all t=s 但是 { P t } \{P_t\} {Pt}是不可数集合,这意味着在 L 2 [ 0 , 1 ] L^2[0,1] L2[0,1]上的有界算子空间在算子范数中是不可分离的。我们可以将这个事实与序列空间 l ∞ l^\infty l是不可分离的事实进行比较。
在希尔伯特空间所有的有界算子的集合,与算子范数和伴随操作(adjoint operation),产生了 C ∗ − a l g e b r a C^*-algebra Calgebra
[1]: https://en.wikipedia.org/wiki/Operator_norm

  • 5
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值