场景联动设备触发消息设计思考
一:数据丢失。
消息是否会发生丢失,在于以下 3 个环节:
1、生产者会不会丢消息?
2、消费者会不会丢消息?
3、队列中间件会不会丢消息?
- 生产者会不会丢消息?
当生产者在发布消息时,可能发生以下异常情况:
1、消息没发出去:网络故障或其它问题导致发布失败,中间件直接返回失败
2、不确定是否发布成功:网络问题导致发布超时,可能数据已发送成功,但读取响应结果超时了
如果是情况 1,消息根本没发出去,那么重新发一次就好了。
如果是情况 2,生产者没办法知道消息到底有没有发成功?所以,为了避免消息丢失,它也只能继续重试,直到发布成功为止。
生产者一般会设定一个最大重试次数,超过上限依旧失败,需要记录日志报警处理。
也就是说,生产者为了避免消息丢失,只能采用失败重试的方式来处理。
但发现没有?这也意味着消息可能会重复发送。
是的,在使用消息队列时,要保证消息不丢,宁可重发,也不能丢弃。
- 消费者会不会丢消息?
这种情况就是我们前面提到的,消费者拿到消息后,还没处理完成,就异常宕机了,那消费者还能否重新消费失败的消息?
要解决这个问题,消费者在处理完消息后,必须「告知」队列中间件,队列中间件才会把标记已处理,否则仍旧把这些数据发给消费者。
这种方案需要消费者和中间件互相配合,才能保证消费者这一侧的消息不丢。
无论是 Redis 的 Stream,还是专业的 MQ,例如 RabbitMQ、Kafka,其实都是这么做的。
所以,从这个角度来看,Redis 也是合格的。
- 队列中间件会不会丢消息?
Redis 在以下 2 个场景下,都会导致数据丢失。
1、AOF 持久化配置为每秒写盘,但这个写盘过程是异步的,Redis 宕机时会存在数据丢失的可能。
2、主从复制也是异步的,主从切换时,也存在丢失数据的可能(从库还未同步完成主库发来的数据,就被提成主库)。
基于以上原因我们可以看到,Redis 本身的无法保证严格的数据完整性。
像 RabbitMQ 或 Kafka 这类专业的队列中间件,一般是集群部署,生产者在发布消息时,队列中间件通常会写「多个节点」,以此保证消息的完整性。这样一来,即便其中一个节点挂了,也能保证集群的数据不丢失。
二:消息积压怎么办。
因为 Redis 的数据都存储在内存中,这就意味着一旦发生消息积压,则会导致 Redis 的内存持续增长,如果超过机器内存上限,就会面临被 OOM 的风险。
所以,Redis 的 Stream 提供了可以指定队列最大长度的功能,就是为了避免这种情况发生。
但 Kafka、RabbitMQ 这类消息队列就不一样了,它们的数据都存储在磁盘上,磁盘的成本要比内存小得多,当消息积压时无非就是多用一些磁盘空间,对比内存会更加「坦然」。
综上,我们可以看到,把 Redis 当作队列来使用时,始终面临的 2 个问题:
1、Redis 本身可能会丢数据。
2、面对消息积压,Redis 内存资源紧张。
到这里,Redis 是否可以用作队列,我想答案比较清晰了。
如果你的业务场景足够简单,对于数据丢失不敏感,而且消息积压概率比较小的情况下,把 Redis 当作队列是完全可以的。
而且,Redis 相比于 Kafka、RabbitMQ,部署和运维也更加轻量。
如果你的业务场景对于数据丢失非常敏感,而且写入量非常大,消息积压时会占用很多的机器资源,那么我建议你使用专业的消息队列中间件。
总结:
我们都知道 Kafka、RabbitMQ 是非常专业的消息中间件,但它们的部署和运维,相比于 Redis 来说,也会更复杂一些。
如果你在一个大公司,公司本身就有优秀的运维团队,那么使用这些中间件肯定没问题,因为有足够优秀的人能 hold 住这些中间件,公司也会投入人力和时间在这个方向上。
但如果你是在一个初创公司,业务正处在快速发展期,暂时没有能 hold 住这些中间件的团队和人,如果贸然使用这些组件,当发生故障时,排查问题也会变得很困难,甚至会阻碍业务的发展。
而这种情形下,如果公司的技术人员对于 Redis 都很熟,综合评估来看,Redis 也基本可以满足业务 90% 的需求,那当下选择 Redis 未必不是一个好的决策。