Description
在一个大晴天,Oliver与同学们一共N人出游,他们走到一条河的东岸边,想要过河到西岸。而东岸有一条小船。
船太小了,一次只能乘坐两人。每个人都有一个渡河时间T,船划到对岸的时间等于船上渡河时间较长的人所用时间。
现在已知N个人的渡河时间T,Oliver想要你告诉他,他们最少要花费多少时间,才能使所有人都过河。
注意,只有船在东岸(西岸)时东岸(西岸)的人才能坐上船划到对岸。
Input
输入文件第一行为人数N,以下有N行,每行一个数。
第i+1行的数为第i个人的渡河时间。
Output
输出文件仅包含一个数,表示所有人都渡过河的最少渡河时间。
Hint
[样例解释]
初始:东岸{1,2,3,4},西岸{}
第一次:东岸{3,4},西岸{1,2} 时间7
第二次:东岸{1,3,4},西岸{2} 时间6
第三次:东岸{1},西岸{2,3,4} 时间15
第四次:东岸{1,2},西岸{3,4} 时间7
第五次:东岸{},西岸{1,2,3,4} 时间7
所以总时间为7+6+15+7+7=42,没有比这个更优的方案。
[数据范围]
对于40%的数据满足N<=8
对于100%的数据满足N<=100000。
题解
对于每次过河,考虑两种情况
- 1、2过去,1回来,i、i-1过去,2回来
- 1、i过去,1回来
递推一下取最小值,递归会Boom~
Code
#include <stdio.h>
#include <algorithm>
using namespace std;
int n,a[101000],f[101000];
long long min(long long x,long long y){return x<y?x:y;}
int main()
{
scanf("%d",&n);
for (int i=1;i<=n;i++)
scanf("%d",&a[i]);
f[1]=a[1];
f[2]=a[2];
for (int i=3;i<=n;i++)
{
f[i]=min(f[i-1]+a[i]+a[1],f[i-2]+a[1]+a[2]+a[2]+a[i]);
}
printf("%lld\n",f[n]);
return 0;
}