Description
萨丽•斯内尔(Sally Snail,蜗牛)喜欢在 N x N 的棋盘上闲逛(1 < n <= 120)。她总是从棋盘的左上角出发。棋盘上有空的格子(用“.”来表示)和 B 个路障(用“#”来表示)。
萨丽总是垂直(向上或者向下)或水平(向左或者向右)地走。她可以从出发地(总是记作 A1 )向下或者向右走。一旦萨丽选定了一个方向,她就会一直走下去。如果她遇到棋盘边缘或者路障,她就停下来,并且转过 90 度。她不可能离开棋盘,或者走进路障当中。并且,萨丽从不跨过她已经经过的格子。当她再也不能走的时候,她就停止散步。
你的任务是计算并输出,如果萨丽聪明地选择她的路线的话,她所能够经过的最多格子数。
Input
输入的第一行包括 N ——棋盘的大小,和 B ——路障的数量(1 <= B <= 200)。接下来的 B 行包含着路障的位置信息。下面的样例输入对应着上面的示例棋盘。下面的输出文件表示问题的解答。注意,当 N 〉26 时,输入文件就不能表示 Z 列以后的路障了。
Output
输出文件应该只由一行组成,即萨丽能够经过的最多格子数。
Analysis
纯粹的dfs没有坑,没什么好讲的了
Code
/*
ID:wjp13241
PROG:snail
LANG:C++
*/
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <iostream>
#include <cmath>
#include <stack>
#include <queue>
#define fo(i,a,b) for (int i=a;i<=b;i++)
#define fil(x,t) memset(x,t,sizeof(x))
#define STP system("pause")
#define min(x,y) x<y?x:y
#define max(x,y) x>y?x:y
#define ld long double
#define ll long long
#define INF 0x3f3f3f3f
#define EPS 1e-4
#define N 121
#define E 501
using namespace std;
struct pos{
int x,y;
pos operator +(const pos &b)const{return (pos){x+b.x,y+b.y};}
}dir[4]={{-1,0},{1,0},{0,-1},{0,1}};
int map[N][N],vis[N][N],ans=0;
int dfs(pos now,int d,int step)
{
if (map[now.x][now.y])
return 0;
if (vis[now.x][now.y])
return 0;
vis[now.x][now.y]=1;
pos tar=now+dir[d];
ans=max(ans,step);
if (map[tar.x][tar.y])
{
dfs(now+dir[0],0,step+1);
dfs(now+dir[1],1,step+1);
dfs(now+dir[2],2,step+1);
dfs(now+dir[3],3,step+1);
}
else
dfs(now+dir[d],d,step+1);
vis[now.x][now.y]=0;
}
int main()
{
freopen("snail.in","r",stdin);
freopen("snail.out","w",stdout);
int n,m;
scanf("%d%d",&n,&m);
fo(i,0,n+1)
map[i][0]=map[i][n+1]=map[0][i]=map[n+1][i]=1;
fo(i,1,m)
{
char x;
int y;
getchar();
scanf("%c%d",&x,&y);
map[x-'A'+1][y]=1;
}
dfs((pos){1,1},1,1);
dfs((pos){1,1},3,1);
printf("%d\n",ans);
return 0;
}