矩阵取数游戏_洛谷1005_dp

123 篇文章 0 订阅

题目描述


帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij均为非负整数。游戏规则如下:

  1. 每次取数时须从每行各取走一个元素,共n个。m次后取完矩阵所有元素;

  2. 每次取走的各个元素只能是该元素所在行的行首或行尾;

  3. 每次取数都有一个得分值,为每行取数的得分之和,每行取数的得分 = 被取走的元素值*2^i,其中i表示第i次取数(从1开始编号);

  4. 游戏结束总得分为m次取数得分之和。

帅帅想请你帮忙写一个程序,对于任意矩阵,可以求出取数后的最大得分。

输入格式:


输入文件game.in包括n+1行:

第1行为两个用空格隔开的整数n和m。

第2~n+1行为n*m矩阵,其中每行有m个用单个空格隔开的非负整数。

数据范围:


60%的数据满足:1<=n, m<=30,答案不超过10^16

100%的数据满足:1<=n, m<=80,0<=aij<=1000

输出格式:


输出文件game.out仅包含1行,为一个整数,即输入矩阵取数后的最大得分。

Analysis


本来一道很水的dp被硬生生加上高精度,调wa到想死(哭泣
首先可以想到这些行之间是没有关系影响的,那么完全可以边读边做,就变成一段序列两边取数字求最大值
两种思路,从两边往中间取,那么 f[i][j] 表示从前往后取了 i 个数字,从后往前取了j个数字,
方程 f[i][j]=max{f[i1][j]+num[i]2i+mj+1,f[i][j+1]+num[j]2i+mj+1}
特别的,我们规定 f[0][m] 只能往后取, f[1][m+1] 只能往前取
2的n次方可以打表,高精度压位会比较快

从中间取大概就是每加上一个数字就把转移前的状态*2,不用考虑乘方,不会写
除了高精度基本没难度的题

Code


#include <stdio.h>
#include <string.h>
#define rep(i, a, b) for (int i = a; i <= b; i ++)
#define drp(i, a, b) for (int i = a; i >= b; i --)
#define fill(x, t) memset(x, t, sizeof(x))
#define maxn 10
#define mod 10000
#define N 201
using namespace std;
struct num{
    int s[maxn+1];
    inline num operator +(num b){
        num c = {0};int v = 0;
        for (int i = maxn; i > 0; i --){
            c.s[i] = (s[i] + b.s[i] + v) % mod;
            v = (s[i] + b.s[i] + v) / mod;
        }
        return c;
    }
    inline num operator *(num b){
        num c = {0}; int v = 0;
        for (int i = maxn; i > 0; i --){
            for (int j = maxn; j > 0; j --){
                c.s[maxn - ((maxn - i + 1) + (maxn - j + 1) - 1) + 1] += s[i] * b.s[j];
            }
        }
        for (int i = maxn; i > 0; i --){
            if (c.s[i] >= mod){
                c.s[i - 1] += c.s[i] / mod;
                c.s[i] = c.s[i] % mod;
            }
        }
        return c;
    }
    inline num operator /(int x){
        num c = {0}; int v = 0;
        for (int i = 1; i <= maxn; i ++){
            int t = v * mod + s[i];
            c.s[i] = t / x;
            v = t % x;
        }
        return c;
    }
    inline num operator -(num b){
        num c = {0}; int v = 0;
        for (int i = maxn; i > 0; i --){
            if (s[i] - v >= b.s[i]){
                c.s[i] = s[i] - b.s[i] - v, v = 0;
            }else{
                c.s[i] = s[i] - b.s[i] - v + mod, v = 1;
            }
        }
        return c;
    }
    inline void read(int x){
        int cnt = 0;
        do{
            s[maxn - cnt++] = x % mod;
            x /= mod;
        }while (cnt <= maxn);
    }
    inline void output(){
        int i = 0;
        num tmp = *this;
        while (!tmp.s[i] && i < maxn){
            i ++;
        }
        printf("%d", tmp.s[i]);
        for (int j = i + 1; j <= maxn; j ++){
            int p = 4, f[5];
            fill(f, 0);
            do{
                f[p --] = tmp.s[j] % 10;
            }while (tmp.s[j] /= 10);
            for (int k = 1; k <= 4; k++){
                printf("%d",f[k]);
            }
        }
        printf("\n");
    }
}map[N][N], f[N][N], p[N];
inline int read(){
    int x = 0, v = 1;
    char ch = getchar();
    while (ch < '0' || ch > '9'){
        if (ch == '-'){
            v = -1;
        }
        ch = getchar();
    }
    while (ch <= '9' && ch >= '0'){
        x = x * 10 + ch - '0';
        ch = getchar();
    }
    return x * v;
}
inline num max(num x, num y){
    int i = 0;
    while (!x.s[i] && i < maxn){
        i ++;
    }
    int j = 0;
    while (!y.s[j] && j < maxn){
        j ++;
    }
    int lenx = maxn - i + 1, leny = maxn - j + 1;
    if (lenx < leny){
        return y;
    }else if (lenx > leny){
        return x;
    }else{
        while (i <= maxn && j <= maxn){
            if (x.s[i] > y.s[j]){
                return x;
            }else if (x.s[i] < y.s[j]){
                return y;
            }
            i ++;
            j ++;
        }
    }
    return x;
}
int main(void){
    num two;
    two.read(2);
    p[0].read(1);
    rep(i, 1, 81){
        p[i] = p[i - 1] * two;
    }
    int n = read(), m = read();
    rep(i, 1, n){
        rep(j, 1, m){
            map[i][j].read(read());
        }
    }
    num prt;
    fill(prt.s, 0);
    rep(k, 1, n){
        rep(i, 0, m){
            drp(j, m + 1, i + 1){
                fill(f[i][j].s, 0);
                int term = i + m - j + 1;
                if (i != 0){
                    f[i][j] = map[k][i] * p[term] + f[i - 1][j];
                }
                if (j != m + 1){
                    f[i][j] = max(f[i][j], map[k][j] * p[term] + f[i][j + 1]);
                }
            }
        }
        num ans;
        fill(ans.s, 0);
        rep(i, 0, m){
            ans = max(ans, f[i][i + 1]);
        }
        // ans.output();
        prt = prt + ans;
    }
    prt.output();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值