题目描述
帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij均为非负整数。游戏规则如下:
每次取数时须从每行各取走一个元素,共n个。m次后取完矩阵所有元素;
每次取走的各个元素只能是该元素所在行的行首或行尾;
每次取数都有一个得分值,为每行取数的得分之和,每行取数的得分 = 被取走的元素值*2^i,其中i表示第i次取数(从1开始编号);
游戏结束总得分为m次取数得分之和。
帅帅想请你帮忙写一个程序,对于任意矩阵,可以求出取数后的最大得分。
输入格式:
输入文件game.in包括n+1行:
第1行为两个用空格隔开的整数n和m。
第2~n+1行为n*m矩阵,其中每行有m个用单个空格隔开的非负整数。
数据范围:
60%的数据满足:1<=n, m<=30,答案不超过10^16
100%的数据满足:1<=n, m<=80,0<=aij<=1000
输出格式:
输出文件game.out仅包含1行,为一个整数,即输入矩阵取数后的最大得分。
Analysis
本来一道很水的dp被硬生生加上高精度,调wa到想死(哭泣
首先可以想到这些行之间是没有关系影响的,那么完全可以边读边做,就变成一段序列两边取数字求最大值
两种思路,从两边往中间取,那么
f[i][j]
表示从前往后取了
i
个数字,从后往前取了
方程
f[i][j]=max{f[i−1][j]+num[i]∗2i+m−j+1,f[i][j+1]+num[j]∗2i+m−j+1}
特别的,我们规定
f[0][m]
只能往后取,
f[1][m+1]
只能往前取
2的n次方可以打表,高精度压位会比较快
从中间取大概就是每加上一个数字就把转移前的状态*2,不用考虑乘方,不会写
除了高精度基本没难度的题
Code
#include <stdio.h>
#include <string.h>
#define rep(i, a, b) for (int i = a; i <= b; i ++)
#define drp(i, a, b) for (int i = a; i >= b; i --)
#define fill(x, t) memset(x, t, sizeof(x))
#define maxn 10
#define mod 10000
#define N 201
using namespace std;
struct num{
int s[maxn+1];
inline num operator +(num b){
num c = {0};int v = 0;
for (int i = maxn; i > 0; i --){
c.s[i] = (s[i] + b.s[i] + v) % mod;
v = (s[i] + b.s[i] + v) / mod;
}
return c;
}
inline num operator *(num b){
num c = {0}; int v = 0;
for (int i = maxn; i > 0; i --){
for (int j = maxn; j > 0; j --){
c.s[maxn - ((maxn - i + 1) + (maxn - j + 1) - 1) + 1] += s[i] * b.s[j];
}
}
for (int i = maxn; i > 0; i --){
if (c.s[i] >= mod){
c.s[i - 1] += c.s[i] / mod;
c.s[i] = c.s[i] % mod;
}
}
return c;
}
inline num operator /(int x){
num c = {0}; int v = 0;
for (int i = 1; i <= maxn; i ++){
int t = v * mod + s[i];
c.s[i] = t / x;
v = t % x;
}
return c;
}
inline num operator -(num b){
num c = {0}; int v = 0;
for (int i = maxn; i > 0; i --){
if (s[i] - v >= b.s[i]){
c.s[i] = s[i] - b.s[i] - v, v = 0;
}else{
c.s[i] = s[i] - b.s[i] - v + mod, v = 1;
}
}
return c;
}
inline void read(int x){
int cnt = 0;
do{
s[maxn - cnt++] = x % mod;
x /= mod;
}while (cnt <= maxn);
}
inline void output(){
int i = 0;
num tmp = *this;
while (!tmp.s[i] && i < maxn){
i ++;
}
printf("%d", tmp.s[i]);
for (int j = i + 1; j <= maxn; j ++){
int p = 4, f[5];
fill(f, 0);
do{
f[p --] = tmp.s[j] % 10;
}while (tmp.s[j] /= 10);
for (int k = 1; k <= 4; k++){
printf("%d",f[k]);
}
}
printf("\n");
}
}map[N][N], f[N][N], p[N];
inline int read(){
int x = 0, v = 1;
char ch = getchar();
while (ch < '0' || ch > '9'){
if (ch == '-'){
v = -1;
}
ch = getchar();
}
while (ch <= '9' && ch >= '0'){
x = x * 10 + ch - '0';
ch = getchar();
}
return x * v;
}
inline num max(num x, num y){
int i = 0;
while (!x.s[i] && i < maxn){
i ++;
}
int j = 0;
while (!y.s[j] && j < maxn){
j ++;
}
int lenx = maxn - i + 1, leny = maxn - j + 1;
if (lenx < leny){
return y;
}else if (lenx > leny){
return x;
}else{
while (i <= maxn && j <= maxn){
if (x.s[i] > y.s[j]){
return x;
}else if (x.s[i] < y.s[j]){
return y;
}
i ++;
j ++;
}
}
return x;
}
int main(void){
num two;
two.read(2);
p[0].read(1);
rep(i, 1, 81){
p[i] = p[i - 1] * two;
}
int n = read(), m = read();
rep(i, 1, n){
rep(j, 1, m){
map[i][j].read(read());
}
}
num prt;
fill(prt.s, 0);
rep(k, 1, n){
rep(i, 0, m){
drp(j, m + 1, i + 1){
fill(f[i][j].s, 0);
int term = i + m - j + 1;
if (i != 0){
f[i][j] = map[k][i] * p[term] + f[i - 1][j];
}
if (j != m + 1){
f[i][j] = max(f[i][j], map[k][j] * p[term] + f[i][j + 1]);
}
}
}
num ans;
fill(ans.s, 0);
rep(i, 0, m){
ans = max(ans, f[i][i + 1]);
}
// ans.output();
prt = prt + ans;
}
prt.output();
return 0;
}