Description
给定一个1~n的排列x,每次你可以将x1~xi翻转。你需要求出将序列变为升序的最小操作次数。有多组数据。
Input
第一行一个整数t表示数据组数。
每组数据第一行一个整数n,第二行n个整数x1~xn。
Output
每组数据输出一行一个整数表示答案。
Hint
【数据规模和约定】
对于100%的测试数据,t=5,n<=25。
对于测试点1,n=5。
对于测试点2,n=6。
对于测试点3,n=7。
对于测试点4,n=8。
对于测试点5,n=10。
对于测试点6,n=12。
对于测试点7,n=16。
对于测试点8,n=18。
对于测试点9,n=22。
对于测试点10,n=25。
Solution
看到n辣莫小就要想到状压或者搜索了
依稀记得dfsid。这题就是枚举一个翻转次数的限制去翻,如果刚好能翻到就输出此时的限制。
剪枝1. 一段序列不可能连续翻转两次
剪枝2. 当最后一位是n时不用翻
剪枝3. 每次翻转最多会减少一对相邻的相差不为1的数对,最多新增一对这样的数对。而这样不合法的数对是至少需要翻转的次数。
1、2剪枝≈没用,加上3之后就显著了
Code
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <iostream>
#include <queue>
#include <vector>
#include <algorithm>
#define rep(i, st, ed) for (int i = st; i <= ed; i += 1)
#define drp(i, st, ed) for (int i = st; i >= ed; i -= 1)
#define erg(i, st) for (int i = ls[st]; i; i = e[i].next)
#define fill(x, t) memset(x, t, sizeof(x))
#define min(x, y) ((x)<(y)?(x):(y))
#define max(x, y) ((x)>(y)?(x):(y))
#define ld long double
#define db double
#define ll long long
#define INF 0x3f3f3f3f
#define N 1001
#define E 1001
#define L 1001
bool flag;
int a[N], c[N];
int n;
inline int read() {
int x = 0, v = 1;
char ch = getchar();
for (; ch < '0' || ch > '9'; v *= (ch == '-')?(-1):(1), ch = getchar());
for (; ch <= '9' && ch >= '0'; (x *= 10) += ch - '0', ch = getchar());
return x * v;
}
inline void swap(int x) {
rep(i, 1, x / 2) {
a[i] ^= a[x - i + 1];
a[x - i + 1] ^= a[i];
a[i] ^= a[x - i + 1];
}
}
inline int pd(int x, int y) {
return abs(a[x] - a[y]) != 1;
}
inline void dfs(int lim, int cnt, int last, int left) {
if (flag) {
return ;
}
if (cnt == lim) {
rep(i, 1, n) {
if (a[i] != i) {
return ;
}
}
flag = true;
return ;
}
if (cnt + left > lim) {
return ;
}
int ed = n;
drp(i, n, 2) {
if (a[i] != i) {
ed = i;
break;
}
}
rep(i, 2, ed) {
if (i == last) {
continue;
}
swap(i);
dfs(lim, cnt + 1, i, left - pd(1, i + 1) + pd(i, i + 1));
if (flag) {
return ;
}
swap(i);
}
}
int main(void) {
int T = read();
while (T --) {
n = read();
int st = -1;
rep(i, 1, n) {
a[i] = read();
st += pd(i, i - 1);
}
int ans = 0;
rep(i, 1, n * 2) {
flag = false;
dfs(i, 0, 0, st);
if (flag) {
ans = i;
break;
}
}
printf("%d\n", ans);
}
return 0;
}