bzoj1412 [ZJOI2009]狼和羊的故事 最小割

31 篇文章 0 订阅
17 篇文章 0 订阅

Description


“狼爱上羊啊爱的疯狂,谁让他们真爱了一场;狼爱上羊啊并不荒唐,他们说有爱就有方向......” Orez听到这首歌,心想:狼和羊如此和谐,为什么不尝试羊狼合养呢?说干就干! Orez的羊狼圈可以看作一个n*m个矩阵格子,这个矩阵的边缘已经装上了篱笆。可是Drake很快发现狼再怎么也是狼,它们总是对羊垂涎三尺,那首歌只不过是一个动人的传说而已。所以Orez决定在羊狼圈中再加入一些篱笆,还是要将羊狼分开来养。 通过仔细观察,Orez发现狼和羊都有属于自己领地,若狼和羊们不能呆在自己的领地,那它们就会变得非常暴躁,不利于他们的成长。 Orez想要添加篱笆的尽可能的短。当然这个篱笆首先得保证不能改变狼羊的所属领地,再就是篱笆必须修筑完整,也就是说必须修建在单位格子的边界上并且不能只修建一部分。

10%的数据 n,m≤3
30%的数据 n,m≤20
100%的数据 n,m≤100

Solution


显然如果没有0的点那么答案就是固定的暴力即可
考虑有0的情况,我们需要弄清楚每个0划分给了羊还是狼。连s到1容量为INF表示狼,连2到t容量为INF表示羊,对于相邻且不同的边连x到y容量为1表示从这里割开需要长度为1的栅栏
1A,终于是找着点手感了

Code


#include <stdio.h>
#include <string.h>
#include <queue>
#define rep(i,st,ed) for (int i=st;i<=ed;++i)
#define fill(x,t) memset(x,t,sizeof(x))
#define min(x,y) ((x)<(y)?(x):(y))
const int INF=0x3f3f3f3f;
const int L=105;
const int N=20005;
const int E=160005;
struct edge{int x,y,w,next;}e[E];
std:: queue<int> que;
int ls[N],edCnt=1;
int rc[L][L],id[L][L],dis[N];
int dx[4][2]={{-1,0},{1,0},{0,-1},{0,1}};
void addEdge(int x,int y,int w) {
    e[++edCnt]=(edge){x,y,w,ls[x]}; ls[x]=edCnt;
    e[++edCnt]=(edge){y,x,0,ls[y]}; ls[y]=edCnt;
}
int bfs(int st,int ed) {
    while (!que.empty()) que.pop();
    que.push(st);
    fill(dis,-1);
    dis[st]=1;
    while (!que.empty()) {
        int now=que.front(); que.pop();
        for (int i=ls[now];i;i=e[i].next) {
            if (e[i].w>0&&dis[e[i].y]==-1) {
                que.push(e[i].y);
                dis[e[i].y]=dis[now]+1;
                if (e[i].y==ed) return 1;
            }
        }
    }
    return 0;
}
int find(int now,int ed,int mn) {
    if (now==ed||!mn) return mn;
    int ret=0;
    for (int i=ls[now];i;i=e[i].next) {
        if (e[i].w>0&&dis[now]+1==dis[e[i].y]) {
            int d=find(e[i].y,ed,min(e[i].w,mn-ret));
            e[i].w-=d; e[i^1].w+=d;
            ret+=d;
            if (ret==mn) break;
        }
    }
    return ret;
}
int dinic(int st,int ed) {
    int ret=0;
    while (bfs(st,ed)) ret+=find(st,ed,INF);
    return ret;
}
int main(void) {
    int n,m; scanf("%d%d",&n,&m);
    int cnt=0;
    rep(i,1,n) rep(j,1,m) {
        scanf("%d",&rc[i][j]);
        id[i][j]=++cnt;
    }
    rep(i,1,n) rep(j,1,m) {
        if (rc[i][j]==1) addEdge(0,id[i][j],INF);
        else if (rc[i][j]==2) addEdge(id[i][j],cnt+1,INF);
        rep(k,0,3) {
            int p=i+dx[k][0],q=j+dx[k][1];
            if (p>0&&p<=n&&q>0&&q<=m&&rc[p][q]!=1) addEdge(id[i][j],id[p][q],1);
        }
    }
    printf("%d\n", dinic(0,cnt+1));
    return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值