bzoj3626 [LNOI2014]LCA 树链剖分

24 篇文章 0 订阅
15 篇文章 0 订阅

Description


给出一个n个节点的有根树(编号为0到n-1,根节点为0)。一个点的深度定义为这个节点到根的距离+1。
设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先。
有q次询问,每次询问给出l r z,求sigma_{l<=i<=r}dep[LCA(i,z)]。
(即,求在[l,r]区间内的每个节点i与z的最近公共祖先的深度之和)

共5组数据,n与q的规模分别为10000,20000,30000,40000,50000。

Solution


一开始就想偏了,越推越做不出来o(╯□╰)o
最初的想法是对于同属于一个子树内的节点他们和点z的lca是固定的,但是发现这样反而不好做
可以发现求[l,r]的答案可以拆成求[1,l-1]和[1,r]两部分,l和r的lca深度即为l和r到根节点路径的并的长度(可以画图理解
那么我们就离线所有的询问排序,用一种能在树上求路径和、树上修改路径的数据结构统计答案,lct或者树链剖分都行

这道题已经给定的每个节点的父亲,因此只用连单向边

Code


#include <stdio.h>
#include <algorithm>
#include <vector>
#define rep(i,st,ed) for (int i=st;i<=ed;++i)
const int N=50005;
const int E=50005;
struct edge{int x,y,next;}e[E];
struct Q{int x,z,v,id;};
std:: vector<Q> q;
int size[N],dep[N],pos[N],bl[N],fa[N];
int ans[N],sum[N<<2],lazy[N<<2];
int ls[N],edCnt=0;
int n,m;
int read() {
    int x=0,v=1; char ch=getchar();
    for (;ch<'0'||ch>'9';v=(ch=='-')?(-1):(v),ch=getchar());
    for (;ch<='9'&&ch>='0';x=x*10+ch-'0',ch=getchar());
    return x*v;
}
void addEdge(int x,int y) {
    e[++edCnt]=(edge){x,y,ls[x]}; ls[x]=edCnt;
}
void dfs1(int now) {
    size[now]=1;
    for (int i=ls[now];i;i=e[i].next) {
        dep[e[i].y]=dep[now]+1;
        fa[e[i].y]=now;
        dfs1(e[i].y);
        size[now]+=size[e[i].y];
    }
}
void dfs2(int now,int up) {
    pos[now]=++pos[0]; bl[now]=up;
    int mx=0;
    for (int i=ls[now];i;i=e[i].next) {
        if (size[e[i].y]>size[mx]) mx=e[i].y;
    }
    if (!mx) return ;
    dfs2(mx,up);
    for (int i=ls[now];i;i=e[i].next) {
        if (e[i].y!=mx) dfs2(e[i].y,e[i].y);
    }
}
void push_down(int now,int tl,int tr) {
    if (!lazy[now]) return ;
    lazy[now<<1]+=lazy[now];
    lazy[now<<1|1]+=lazy[now];
    int mid=(tl+tr)>>1;
    sum[now<<1]+=(mid-tl+1)*lazy[now];
    sum[now<<1|1]+=(tr-mid)*lazy[now];
    lazy[now]=0;
}
void modify(int now,int tl,int tr,int l,int r,int v) {
    if (tl==l&&tr==r) {
        sum[now]+=(r-l+1)*v;
        lazy[now]+=v;
        return ;
    }
    push_down(now,tl,tr);
    int mid=(tl+tr)>>1;
    if (r<=mid) modify(now<<1,tl,mid,l,r,v);
    else if (l>mid) modify(now<<1|1,mid+1,tr,l,r,v);
    else {
        modify(now<<1,tl,mid,l,mid,v);
        modify(now<<1|1,mid+1,tr,mid+1,r,v);
    }
    sum[now]=sum[now<<1]+sum[now<<1|1];
}
void change(int x,int y,int v) {
    while (bl[x]!=bl[y]) {
        if (dep[bl[x]]<dep[bl[y]]) std:: swap(x,y);
        modify(1,1,n,pos[bl[x]],pos[x],v);
        x=fa[bl[x]];
    }
    if (pos[y]<pos[x]) std:: swap(x,y);
    modify(1,1,n,pos[x],pos[y],v);
}
int query(int now,int tl,int tr,int l,int r) {
    if (tl==l&&tr==r) return sum[now];
    push_down(now,tl,tr);
    int mid=(tl+tr)>>1;
    if (r<=mid) return query(now<<1,tl,mid,l,r);
    else if (l>mid) return query(now<<1|1,mid+1,tr,l,r);
    else return query(now<<1,tl,mid,l,mid)+query(now<<1|1,mid+1,tr,mid+1,r);
}
int get_sum(int x,int y) {
    int ret=0;
    while (bl[x]!=bl[y]) {
        if (dep[bl[x]]<dep[bl[y]]) std:: swap(x,y);
        ret+=query(1,1,n,pos[bl[x]],pos[x]);
        x=fa[bl[x]];
    }
    if (pos[y]<pos[x]) std:: swap(x,y);
    ret+=query(1,1,n,pos[x],pos[y]);
    return ret;
}
bool cmp(Q a,Q b) {return a.x<b.x;}
int main(void) {
    n=read(),m=read();
    rep(i,2,n) {
        int x=read()+1;
        addEdge(x,i);
    }
    dep[1]=1; dfs1(1); dfs2(1,1);
    int cnt=0;
    rep(i,1,m) {
        int x=read()+1,y=read()+1,z=read()+1;
        q.push_back((Q){x-1,z,-1,i});
        q.push_back((Q){y,z,1,i});
    }
    std:: sort(q.begin(),q.end(),cmp);
    int now=0;
    rep(i,0,q.size()-1) {
        while (now<q[i].x) {
            now++;
            change(1,now,1);
        }
        ans[q[i].id]+=q[i].v*get_sum(1,q[i].z);
    }
    rep(i,1,m) printf("%d\n", ans[i]%201314);
    return 0;
}
题目描述 有一个 $n$ 个的棋盘,每个上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一,路径上的数字和为 $S$。定义一个 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个的父节是它的前驱或者后继,然后我们从根节开始,依向下遍历,对于每个节,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有的权值和的最小值,然后再将这个值加上当前节的权值,就可以得到从根节到当前节的路径中,所有的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值