Description
对于一个给定的序列a1, …, an,我们对它进行一个操作reduce(i),该操作将数列中的元素ai和ai+1用一个元素max(ai,ai+1)替代,这样得到一个比原来序列短的新序列。这一操作的代价是max(ai,ai+1)。进行n-1次该操作后,可以得到一个长度为1的序列。我们的任务是计算代价最小的reduce操作步骤,将给定的序列变成长度为1的序列。
1 <= n <= 1,000,000
0 <=ai<= 1, 000, 000, 000
Solution
每个元素最终都会并到距离最近的大于它的元素,那么正反扫两遍用单调栈维护距离最近的更大值取最优即可
Code
#include <stdio.h>
#include <algorithm>
#include <set>
#define rep(i,st,ed) for (int i=st;i<=ed;++i)
#define drp(i,st,ed) for (int i=st;i>=ed;--i)
typedef long long ll;
const int N=2000005;
int l[N],r[N],a[N];
int stack[N];
int read() {
int x=0,v=1; char ch=getchar();
for (;ch<'0'||ch>'9';v=(ch=='-')?(-1):(v),ch=getchar());
for (;ch>='0'&&ch<='9';x=x*10+ch-'0',ch=getchar());
return x*v;
}
int main(void) {
int n=read();
rep(i,1,n) a[i]=read();
int top=0;
rep(i,1,n) {
while (top&&a[stack[top]]<=a[i]) top--;
l[i]=stack[top]; stack[++top]=i;
}
while (top) stack[top]=0,top--;
drp(i,n,1) {
while (top&&a[stack[top]]<=a[i]) top--;
r[i]=stack[top]; stack[++top]=i;
}
ll ans=0;
rep(i,1,n) {
if (!l[i]) ans+=a[r[i]];
else if (!r[i]) ans+=a[l[i]];
else ans+=std:: min(a[l[i]],a[r[i]]);
}
printf("%lld\n", ans);
return 0;
}