bzoj1345 [Baltic2007]序列问题Sequence 单调栈

Description


对于一个给定的序列a1, …, an,我们对它进行一个操作reduce(i),该操作将数列中的元素ai和ai+1用一个元素max(ai,ai+1)替代,这样得到一个比原来序列短的新序列。这一操作的代价是max(ai,ai+1)。进行n-1次该操作后,可以得到一个长度为1的序列。我们的任务是计算代价最小的reduce操作步骤,将给定的序列变成长度为1的序列。

1 <= n <= 1,000,000
0 <=ai<= 1, 000, 000, 000

Solution


每个元素最终都会并到距离最近的大于它的元素,那么正反扫两遍用单调栈维护距离最近的更大值取最优即可

Code


#include <stdio.h>
#include <algorithm>
#include <set>
#define rep(i,st,ed) for (int i=st;i<=ed;++i)
#define drp(i,st,ed) for (int i=st;i>=ed;--i)
typedef long long ll;
const int N=2000005;
int l[N],r[N],a[N];
int stack[N];
int read() {
    int x=0,v=1; char ch=getchar();
    for (;ch<'0'||ch>'9';v=(ch=='-')?(-1):(v),ch=getchar());
    for (;ch>='0'&&ch<='9';x=x*10+ch-'0',ch=getchar());
    return x*v;
}
int main(void) {
    int n=read();
    rep(i,1,n) a[i]=read();
    int top=0;
    rep(i,1,n) {
        while (top&&a[stack[top]]<=a[i]) top--;
        l[i]=stack[top]; stack[++top]=i;
    }
    while (top) stack[top]=0,top--;
    drp(i,n,1) {
        while (top&&a[stack[top]]<=a[i]) top--;
        r[i]=stack[top]; stack[++top]=i;
    }
    ll ans=0;
    rep(i,1,n) {
        if (!l[i]) ans+=a[r[i]];
        else if (!r[i]) ans+=a[l[i]];
        else ans+=std:: min(a[l[i]],a[r[i]]);
    }
    printf("%lld\n", ans);
    return 0;
}
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值