bzoj2301 [HAOI2011]Problem b 莫比乌斯反演

Description


对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

Solution


首先可以想到答案可以拆开来算,那么就是ni=1mj=1[gcd(i,j)=k]
但是这样化简不好算,考虑另一种思路
f(i)gcd(x,y)=i的数对的数量,F(i)i|gcd(x,y)的数对数量
显然有F(i)=nimi,且F(i)=i|df(d),那么就是莫比乌斯反演的套路了
莫比乌斯反演有两种
一种是F(n)=d|nf(d)f(n)=d|nμ(d)F(nd)
第二种是F(n)=n|df(d)f(n)=n|dμ(dn)F(d)
这里是第二种,化成f(i)=i|dμ(di)nimi
那么枚举k的倍数统计答案即可
注意到对于一个ni=1ni可以跳过相同的结果快速求解,时间是O(n)级别的,那么两个相乘同理也可以这么做

Code


#include <stdio.h>
#include <string.h>
#include <algorithm>
#define rep(i,st,ed) for (int i=st;i<=ed;++i)
const int N=50005;
bool not_prime[N];
int prime[N],sum[N];
short mu[N];
void get_mu() {
    mu[1]=1;
    rep(i,2,N-1) {
        if (!not_prime[i]) {
            prime[++prime[0]]=i;
            mu[i]=-1;
        }
        for (int j=1;j<=prime[0]&&prime[j]*i<N;j++) {
            not_prime[i*prime[j]]=1;
            if (i%prime[j]==0) {
                mu[i*prime[j]]=0;
                break;
            }
            mu[i*prime[j]]=-mu[i];
        }
    }
    rep(i,1,N-1) sum[i]=sum[i-1]+mu[i];
}
int cal(int n,int m,int k) {
    if (n>m) std:: swap(n,m);
    int ret=0;
    for (int i=1,j;i<=n/k;i=j+1) {
        j=std:: min(n/(n/k/i)/k,m/(m/k/i)/k);
        ret+=((n/k/i)*(m/k/i))*(sum[j]-sum[i-1]);
    }
    return ret;
}
int main(void) {
    get_mu();
    int T; scanf("%d",&T);
    while (T--) {
        int a,b,c,d,k;
        scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
        printf("%d\n", cal(b,d,k)-cal(a-1,d,k)-cal(b,c-1,k)+cal(a-1,c-1,k));
    }
    return 0;
}
发布了1180 篇原创文章 · 获赞 337 · 访问量 25万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览