bzoj3992 [SDOI2015]序列统计

13 篇文章 0 订阅

Description


小C有一个集合S,里面的元素都是小于M的非负整数。他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S。
小C用这个生成器生成了许多这样的数列。但是小C有一个问题需要你的帮助:给定整数x,求所有可以生成出的,且满足数列中所有数的乘积mod M的值等于x的不同的数列的有多少个。小C认为,两个数列{Ai}和{Bi}不同,当且仅当至少存在一个整数i,满足Ai≠Bi。另外,小C认为这个问题的答案可能很大,因此他只需要你帮助他求出答案mod 1004535809的值就可以了。

对于10%的数据,1<=N<=1000;
对于30%的数据,3<=M<=100;
对于60%的数据,3<=M<=800;
对于全部的数据,1<=N<=109,3<=M<=8000,M为质数,1<=x<=M-1,输入数据保证集合S中元素不重复

Solution


对于不会做的题可以先从部分分想起,0分暴力也行
先考虑dp,有 f[i][j]=f[i1][jinv(k)%mod](kS) f [ i ] [ j ] = ∑ f [ i − 1 ] [ j ∗ i n v ( k ) % m o d ] ( k ∈ S ) ,10分到手
注意到了N的范围进而往矩乘dp想,进而倦生

显然这样会跳进坑里出不来的。引入原根的概念:设原根为g(下同,那么有 gimodp≢gjmodp(ij) g i mod p ≢ g j mod p ( ∀ i ≠ j ) 。我们求出m的原根,这样所有数都能表示为 gx(x[0,m2]) g x ( x ∈ [ 0 , m − 2 ] ) ,两数字相乘就变为指数的加法了

一个数x有原根当且仅当 x=24pk2pk x = 2 、 4 、 p k 、 2 p k ,其中p是奇素数。原根一般比较小可以直接暴力。将x-1质因数分解得到 x1=piki x − 1 = ∏ p i k i 后,一个数a是x的原根满足 ax1pi≢1(modx) ∀ a x − 1 p i ≢ 1 ( mod x ) 而对于x不为质数时x-1换成 φ(x) φ ( x ) 即可

那么有 f[i][j]=f[i1][jk]c[k] f [ i ] [ j ] = ∑ f [ i − 1 ] [ j − k ] ∗ c [ k ] ,这里的 c[k] c [ k ] 为1当且仅当 gkS g k ∈ S
这就是熟悉的卷积形式了,用NTT是mlogm的。而卷积满足结合律,可以用快速幂加速

NTT与FFT不同之处在于NTT采用原根带入求点值,这里终于写了非递归版的。一个技巧确认能不能用NTT就是看模数有没有原根get

Code


#include <stdio.h>
#include <string.h>
#include <vector>
#define rep(i,st,ed) for (int i=st;i<=ed;++i)
#define fill(x,t) memset(x,t,sizeof(x))

typedef long long LL;
const int N=1048586;
const int MOD=1004535809;

int a[N],b[N],c[N],u[N],ans[N],rev[N];
int n,m,x,s,ny,len;

int ksm(int x,int dep,int mod) {
    int ret=1;
    while (dep) {
        if (dep&1) ret=(LL)ret*x%mod;
        dep/=2; x=(LL)x*x%mod;
    }
    return ret;
}

int get_g(int x) {
    std:: vector <int> v;
    int tmp=x-1;
    rep(i,2,x) {
        if (tmp%i) continue;
        v.push_back(i);
        while (tmp%i==0) tmp/=i;
    }
    rep(i,2,x) {
        bool flag=true;
        rep(j,0,v.size()-1) {
            if (ksm(i,(x-1)/v[j],x)!=1) continue;
            flag=false;
            break;
        }
        if (flag) return i;
    }
}

void NTT(int *a,int f) {
    rep(i,0,len-1) if (i<rev[i]) std:: swap(a[i],a[rev[i]]);
    for (int i=1;i<len;i*=2) {
        int wn;
        if (f==1) wn=ksm(3,(MOD-1)/i/2,MOD);
        else wn=ksm(3,MOD-1-(MOD-1)/i/2,MOD);
        for (int j=0;j<len;j+=i*2) {
            int w=1;
            rep(k,0,i-1) {
                int u=a[j+k],v=(LL)w*a[j+k+i]%MOD;
                a[j+k]=(u+v)%MOD;
                a[j+k+i]=(u-v)%MOD;
                w=(LL)w*wn%MOD;
            }
        }
    }
}

void mul(int *c,int *ta,int *tb) {
    memcpy(a,ta,sizeof(a));
    memcpy(b,tb,sizeof(b));
    NTT(a,1); NTT(b,1);
    rep(i,0,len-1) c[i]=(LL)a[i]*b[i]%MOD;
    NTT(c,-1);
    rep(i,0,len-1) c[i]=(LL)c[i]*ny%MOD;
    rep(i,m-1,len-1) c[i-m+1]=(c[i-m+1]+c[i])%MOD,c[i]=0;
}

void solve(int *c,int dep) {
    while (dep) {
        if (dep&1) mul(ans,ans,c);
        dep/=2; mul(c,c,c);
    }
}

int main(void) {
    scanf("%d%d%d%d",&n,&m,&x,&s);
    int g=get_g(m),lg=0;
    for (len=1;len<=m*2;len*=2,lg++);
    for (int i=0;i<len;i++) rev[i]=(rev[i/2]/2)|((i&1)<<(lg-1));
    for (int i=1,w=g;i<m-1;i++,w=(LL)w*g%m) u[w]=i;
    ny=ksm(len,MOD-2,MOD);
    rep(i,1,s) {
        int x; scanf("%d",&x);
        if (!x) continue;
        c[u[x]]=1;
    }
    ans[0]=1;
    solve(c,n);
    printf("%d\n", (ans[u[x]]+MOD)%MOD);
    return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值