bzoj3163 [Heoi2013]Eden的新背包问题

123 篇文章 0 订阅

Description


“寄没有地址的信,这样的情绪有种距离,你放着谁的歌曲,是怎样的心心静,能不能说给我听。”
失忆的Eden总想努力地回忆起过去,然而总是只能清晰地记得那种思念的感觉,却不能回忆起她的音容笑貌。 记忆中,她总是喜欢给Eden出谜题:在 valentine’s day 的夜晚,两人在闹市中闲逛时,望着礼品店里精巧玲珑的各式玩偶,她突发奇想,问了 Eden这样的一个问题:有n个玩偶,每个玩偶有对应的价值、价钱,每个玩偶都可以被买有限次,在携带的价钱m固定的情况下,如何选择买哪些玩偶以及每个玩偶买多少个,才能使得选择的玩偶总价钱不超过m,且价值和最大。众所周知的,这是一个很经典的多重背包问题,Eden很快解决了,不过她似乎因为自己的问题被飞快解决感到了一丝不高兴,于是她希望把问题加难:多次 询问,每次询问都将给出新的总价钱,并且会去掉某个玩偶(即这个玩偶不能被选择),再问此时的多重背包的答案(即前一段所叙述的问题)。
这下Eden 犯难了,不过Eden不希望自己被难住,你能帮帮他么?

(注意玩偶从0开始编号)

数据满足1 ≤ n ≤ 1000, 1 ≤ q ≤ 3*105 , 1 ≤ ai、bi、c i ≤ 100, 0 ≤ d i < n, 0 ≤ei ≤ 1000。

Solution


感觉做这么多题有点傻了
除去询问不考虑就是裸的多重背包,单调队列或者二进制优化都行
由于物品只去掉了一个,那么做一次前缀dp,再做一次后缀dp,枚举分配的容量找最优值就好了

Code


#include <stdio.h>
#include <string.h>
#include <algorithm>
#define rep(i,st,ed) for (int i=st;i<=ed;++i)
#define drp(i,st,ed) for (int i=st;i>=ed;--i)

const int N=1005;
const int M=2005;

int a[N*12],b[N*12],f[N*12][M],g[N*12][M];
int st[N],ed[N];
int n,tot;

int main(void) {
    scanf("%d",&n);
    rep(i,1,n) {
        int x,y,z;
        scanf("%d%d%d",&x,&y,&z);
        st[i]=tot+1;
        for (int j=1;j<=z;j*=2) {
            a[++tot]=x*j; b[tot]=y*j;
            z-=j;
        }
        if (z) {
            a[++tot]=x*z; b[tot]=y*z;
        }
        ed[i]=tot;
    }
    rep(i,1,tot) {
        drp(j,M-1,0) {
            f[i][j]=std:: max(f[i][j],f[i-1][j]);
            if (j>=a[i]) f[i][j]=std:: max(f[i][j],f[i-1][j-a[i]]+b[i]);
        }
    }
    drp(i,tot,1) {
        drp(j,M-1,0) {
            g[i][j]=std:: max(g[i][j],g[i+1][j]);
            if (j>=a[i]) g[i][j]=std:: max(g[i][j],g[i+1][j-a[i]]+b[i]);
        }
    }
    int T; scanf("%d",&T);
    while (T--) {
        int x,y; scanf("%d%d",&x,&y); x++;
        int ans=0;
        rep(i,0,y) {
            ans=std:: max(ans,f[st[x]-1][i]+g[ed[x]+1][y-i]);
        }
        printf("%d\n", ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值