Description
传说很久以前,大地上居住着一种神秘的生物:地精。 地精喜欢住在连绵不绝的山脉中。具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi,其中Hi是1到N 之间的正 整数。 如果一段山脉比所有与它相邻的山脉都高,则这段山脉是一个山峰。位于边 缘的山脉只有一段相邻的山脉,其他都有两段(即左边和右边)。 类似地,如果一段山脉比所有它相邻的山脉都低,则这段山脉是一个山谷。 地精们有一个共同的爱好——饮酒,酒馆可以设立在山谷之中。地精的酒馆 不论白天黑夜总是人声鼎沸,地精美酒的香味可以飘到方圆数里的地方。 地精还是一种非常警觉的生物,他们在每座山峰上都可以设立瞭望台,并轮 流担当瞭望工作,以确保在第一时间得知外敌的入侵。 地精们希望这N 段山脉每段都可以修建瞭望台或酒馆的其中之一,只有满足 这个条件的整座山脉才可能有地精居住。 现在你希望知道,长度为N 的可能有地精居住的山脉有多少种。两座山脉A 和B不同当且仅当存在一个 i,使得 Ai≠Bi。由于这个数目可能很大,你只对它 除以P的余数感兴趣。
对于 20%的数据,满足 N≤10;
对于 40%的数据,满足 N≤18;
对于 70%的数据,满足 N≤550;
对于 100%的数据,满足 3≤N≤4200,P≤109
Solution
非常naive的我并没有撕烤出正解
有如下三个性质:
1. 一个波动序列是对称的;
2. 若数字i与i+1不相邻,交换后仍然满足是一个波动序列
3. 长度为n的波动序列把每个数字ai变成n+1-ai后仍然满足是一个波动序列
知道了这些就好做题了
设f[I,j]表示长度为i的排列,满足第一位不大于j且第二位小于第一位的波动序列数量,那么有f[I,j]=f[i,j-1]+f[i-1,i-j]
我们可以分情况讨论,当第一位放的数字不大于j时,方案数就是f[i,j-1]
当第一位放的数字刚好是j时,第二位一定不大于j-1。我们删去第一位,把所有大于j的数字减一,就变成求长度为i、第一位不大于j-1且第二位大于第一位的波动序列数量,根据性质3可知方案数是f[i-1][i-j]
Solution
#include <stdio.h>
#include <string.h>
#define rep(i,st,ed) for (int i=st;i<=ed;++i)
const int N=50005;
int f[2][N];
int main(void) {
int n,MOD; scanf("%d%d",&n,&MOD);
f[1][1]=1;
rep(i,2,n) rep(j,1,i) {
f[i&1][j]=f[(i-1)&1][j-1];
f[i&1][j]=(f[i&1][j-1]+f[(i-1)&1][i-j])%MOD;
}
printf("%d\n", f[n&1][n]*2%MOD);
return 0;
}