Description
申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管。布布刚上任就遇到了一个难
题:为即将启动的奥运新项目招募一批短期志愿者。经过估算,这个项目需要N 天才能完成,其中第i 天至少需要
Ai 个人。 布布通过了解得知,一共有M 类志愿者可以招募。其中第i 类可以从第Si 天工作到第Ti 天,招募费用
是每人Ci 元。新官上任三把火,为了出色地完成自己的工作,布布希望用尽量少的费用招募足够的志愿者,但这
并不是他的特长!于是布布找到了你,希望你帮他设计一种最优的招募方案。
1 ≤ N ≤ 1000,1 ≤ M ≤ 10000,题目中其他所涉及的数据均 不超过2^31-1
Solution
这是一道线性规划的裸题,这里写的是单纯形的做法
我们可以根据题意列出若干不等式的限制并要求最小化一个线性多项式的取值
显然所有变量取0的时候有一个常数解,单纯形的精髓就在于交换各变量使得已知的可行解不断变大
Code
#include <stdio.h>
#include <string.h>
#include <math.h>
#define rep(i,st,ed) for (int i=st;i<=ed;++i)
#define fill(x,t) memset(x,t,sizeof(x))
const double EPS=0.0000001;
const int INF=0x3f3f3f3f;
const int N=105;
double a[N*N][N*10],b[N*N],c[N*10],ans;
int n,m;
void pivot(int l,int e) {
rep(i,1,n) if (i!=e) a[l][i]/=a[l][e];
b[l]/=a[l][e]; a[l][e]=1.0/a[l][e];
rep(i,1,m) {
if (i!=l&&fabs(a[i][e])>EPS) {
b[i]-=b[l]*a[i][e];
rep(j,1,n) if (j!=e) a[i][j]-=a[l][j]*a[i][e];
a[i][e]=-a[i][e]*a[l][e];
}
}
ans+=c[e]*b[l];
rep(i,1,n) if (i!=e) c[i]-=a[l][i]*c[e];
c[e]=-c[e]*a[l][e];
}
void solve() {
while (1) {
int e=0,l;
rep(i,1,n) if (c[i]>EPS) {
e=i;
break;
}
if (!e) return ;
double tmp=INF;
rep(i,1,m) if (a[i][e]>EPS&&b[i]/a[i][e]<tmp) {
tmp=b[i]/a[i][e];
l=i;
}
pivot(l,e);
}
}
int main(void) {
scanf("%d%d",&n,&m);
rep(i,1,n) scanf("%lf",&c[i]);
rep(i,1,m) {
int l,r; scanf("%d%d%lf",&l,&r,&b[i]);
rep(j,l,r) a[i][j]=1;
}
solve();
printf("%d\n", (int)(ans+0.1));
return 0;
}