bzoj2333 [SCOI2011]棘手的操作 线段树

版权声明:虽然是个蒟蒻但是转载还是要说一声的哟 https://blog.csdn.net/jpwang8/article/details/80343734

Description


有N个节点,标号从1到N,这N个节点一开始相互不连通。第i个节点的初始权值为a[i],接下来有如下一些操作:

U x y: 加一条边,连接第x个节点和第y个节点
A1 x v: 将第x个节点的权值增加v
A2 x v: 将第x个节点所在的连通块的所有节点的权值都增加v
A3 v: 将所有节点的权值都增加v
F1 x: 输出第x个节点当前的权值
F2 x: 输出第x个节点所在的连通块中,权值最大的节点的权值
F3: 输出所有节点中,权值最大的节点的权值

对于30%的数据,保证 N<=100,Q<=10000
对于80%的数据,保证 N<=100000,Q<=100000
对于100%的数据,保证 N<=300000,Q<=300000
对于所有的数据,保证输入合法,并且 -1000<=v, a[1], a[2], …, a[N]<=1000

Solution


正解是可并堆,然而我写的左偏树复杂度似乎并不是特别科学,也许是人丑常数大

可以考虑离线所有操作先把图建出来,一个特别的建图技巧就是把y向x所在的根连边,这样dfs序始终就是连续的一段了(意识流
然后就能线段树搞搞了

Code


#include <stdio.h>
#include <string.h>
#include <algorithm>
#define rep(i,st,ed) for (int i=st;i<=ed;++i)
#define drp(i,st,ed) for (int i=st;i>=ed;--i)

const int INF=0x3f3f3f3f;
const int N=300005;
const int E=300005;

struct edge {int y,next;} e[E];

int max[N*4],tag[N*4];
int ls[N],edCnt;
int fa[N],a[N],x[N],y[N];
int pos[N],L[N],R[N];
int opt[N];

int read() {
    int x=0,v=1; char ch=getchar();
    for (;ch<'0'||ch>'9';v=(ch=='-')?(-1):(v),ch=getchar());
    for (;ch>='0'&&ch<='9';x=x*10+ch-'0',ch=getchar());
    return x*v;
}

void add_edge(int x,int y) {
    if (x==y) return ;
    e[++edCnt]=(edge) {y,ls[x]}; ls[x]=edCnt;
}

int get_father(int x) {
    if (fa[x]==x) return x;
    return fa[x]=get_father(fa[x]);
}

void dfs(int now) {
    pos[now]=L[now]=R[now]=++pos[0];
    for (int i=ls[now];i;i=e[i].next) {
        dfs(e[i].y);
    }
}

void push_down(int now) {
    if (!tag[now]) return ;
    max[now<<1]+=tag[now];
    max[now<<1|1]+=tag[now];
    tag[now<<1]+=tag[now];
    tag[now<<1|1]+=tag[now];
    tag[now]=0;
}

void modify(int now,int tl,int tr,int l,int r,int v) {
    if (l>r) return ;
    if (tl==l&&tr==r) {
        max[now]+=v;
        tag[now]+=v;
        return ;
    }
    int mid=(tl+tr)>>1;
    push_down(now);
    modify(now<<1,tl,mid,l,std:: min(r,mid),v);
    modify(now<<1|1,mid+1,tr,std:: max(mid+1,l),r,v);
    max[now]=std:: max(max[now<<1],max[now<<1|1]);
}

int query(int now,int tl,int tr,int l,int r) {
    if (l>r) return -INF;
    if (tl==l&&tr==r) return max[now];
    int mid=(tl+tr)>>1;
    push_down(now);
    int qx=query(now<<1,tl,mid,l,std:: min(mid,r));
    int qy=query(now<<1|1,mid+1,tr,std:: max(mid+1,l),r);
    return std:: max(qx,qy);
}

int main(void) {
    int n=read();
    rep(i,1,n) a[i]=read();
    rep(i,1,n) fa[i]=i;
    int T=read();
    rep(i,1,T) {
        char str[3]; scanf("%s",str);
        if (str[0]=='A') {
            if (str[1]=='1') opt[i]=2;
            if (str[1]=='2') opt[i]=3;
            if (str[1]=='3') opt[i]=4;
            x[i]=read();
            if (str[1]!='3') y[i]=read();
        } else if (str[0]=='F') {
            if (str[1]=='1') opt[i]=5;
            if (str[1]=='2') opt[i]=6;
            if (str[1]=='3') opt[i]=7;
            if (str[1]!='3') x[i]=read();
        } else {
            x[i]=read(),y[i]=read();
            x[i]=get_father(x[i]);
            y[i]=get_father(y[i]);
            fa[y[i]]=x[i];
            opt[i]=1;
        }
    }
    drp(i,T,1) {
        if (opt[i]!=1) continue;
        add_edge(x[i],y[i]);
    }
    rep(i,1,n) if (get_father(i)==i) dfs(i);
    rep(i,1,n) fa[i]=i;
    rep(i,1,n) {
        modify(1,1,n,pos[i],pos[i],a[i]);
    }
    rep(i,1,T) {
        if (opt[i]==2) {
            modify(1,1,n,pos[x[i]],pos[x[i]],y[i]);
        } else if (opt[i]==3) {
            int fx=get_father(x[i]);
            modify(1,1,n,L[fx],R[fx],y[i]);
        } else if (opt[i]==4) {
            modify(1,1,n,1,n,x[i]);
        } else if (opt[i]==5) {
            printf("%d\n", query(1,1,n,pos[x[i]],pos[x[i]]));
        } else if (opt[i]==6) {
            int fx=get_father(x[i]);
            printf("%d\n", query(1,1,n,L[fx],R[fx]));
        } else if (opt[i]==7) {
            printf("%d\n", query(1,1,n,1,n));
        } else {
            int fx=get_father(x[i]);
            int fy=get_father(y[i]);
            fa[fy]=fx;
            L[fx]=std:: min(L[fx],L[fy]);
            R[fx]=std:: max(R[fx],R[fy]);
        }
    }
    return 0;
}
阅读更多
想对作者说点什么?
相关热词

博主推荐

换一批

没有更多推荐了,返回首页