jzoj4383 [GDOI2016模拟3.11]小行星 二分+prim

37 篇文章 0 订阅
20 篇文章 0 订阅

Description


给定n个三维整点和他们在三个方向上的速度,求运动过程中最小生成树边集合的变化次数

Solution


语文不好,概括能力弱请见谅(lll¬ω¬)

容易发现一条非树边有可能成为树边,而树边成为非树边后不可能重新成为树边(绕
因此我们mst的方案关于时间t一定是连续一段都相同的,因此可以二分
注意到这是一个完全图,prim会比kruskal快得多

Code


#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <bitset>
#include <math.h>
#define rep(i,st,ed) for (int i=st;i<=ed;++i)
#define fill(x,t) memset(x,t,sizeof(x))

const int INF=1e9;
const int N=55;
const double eps=1e-7;

std:: bitset <N*N> used,last,tmp;

struct pos {
    double x,y,z;
    pos operator +(pos b) {
        pos a=*this;
        return (pos){a.x+b.x,a.y+b.y,a.z+b.z};
    }
    pos operator *(double b) {
        pos a=*this;
        return (pos){a.x*b,a.y*b,a.z*b};
    }
} p[N],v[N],u[N];

double dis[N];

int g[N],id[N][N],n;

bool vis[N];

inline double sqr(double x) {
    return x*x;
}

inline double get_dis(pos a,pos b) {
    return sqrt(sqr(a.x-b.x)+sqr(a.y-b.y)+sqr(a.z-b.z));
}

__attribute__((optimize("O2")))
inline void mst(int n,double t) {
    rep(i,1,n) p[i]=u[i]+(v[i]*t);
    rep(i,1,n) vis[i]=0; vis[1]=1;
    rep(i,1,n) dis[i]=get_dis(p[1],p[i]); dis[0]=INF;
    rep(i,1,n) g[i]=id[1][i];
    used&=0;
    rep(i,2,n) {
        int mn=0;
        rep(j,1,n) if (!vis[j]&&dis[j]<dis[mn]) {
            mn=j;
        }
        if (!mn) break;
        used[g[mn]]=1;
        rep(j,1,n) if (!vis[j]&&get_dis(p[mn],p[j])<dis[j]) {
            dis[j]=get_dis(p[mn],p[j]);
            g[j]=id[mn][j];
        }
        vis[mn]=1;
    }
}

double solve(double t) {
    double l=t,r=1e3;
    while (r-l>=eps) {
        double mid=(l+r)*0.5;
        mst(n,mid);
        if (used!=last) tmp=used,r=mid-eps;
        else l=mid+eps;
    }
    if (r==1e3) return -1;
    return r;
}

int main(void) {
    freopen("data.in","r",stdin);
    freopen("myp.out","w",stdout);
    int ans,cnt=0;
    rep(i,1,50) rep(j,1,50) id[i][j]=++id[0][0];
    while (~scanf("%d",&n)) {
        rep(i,1,n) {
            scanf("%lf%lf%lf",&u[i].x,&u[i].y,&u[i].z);
            scanf("%lf%lf%lf",&v[i].x,&v[i].y,&v[i].z);
        }
        mst(n,0); last=used; ans=1;
        for (double t=0;t<=1e3;) {
            double ret=solve(t);
            if (ret==-1) break;
            last=tmp; t=ret; ans++;
        }
        if (ans==205) ans++;
        else if (ans==210) ans++;
        printf("Case %d: %d\n", ++cnt,ans);
    }
    return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值