Description
给定n个三维整点和他们在三个方向上的速度,求运动过程中最小生成树边集合的变化次数
Solution
语文不好,概括能力弱请见谅(lll¬ω¬)
容易发现一条非树边有可能成为树边,而树边成为非树边后不可能重新成为树边(绕
因此我们mst的方案关于时间t一定是连续一段都相同的,因此可以二分
注意到这是一个完全图,prim会比kruskal快得多
Code
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <bitset>
#include <math.h>
#define rep(i,st,ed) for (int i=st;i<=ed;++i)
#define fill(x,t) memset(x,t,sizeof(x))
const int INF=1e9;
const int N=55;
const double eps=1e-7;
std:: bitset <N*N> used,last,tmp;
struct pos {
double x,y,z;
pos operator +(pos b) {
pos a=*this;
return (pos){a.x+b.x,a.y+b.y,a.z+b.z};
}
pos operator *(double b) {
pos a=*this;
return (pos){a.x*b,a.y*b,a.z*b};
}
} p[N],v[N],u[N];
double dis[N];
int g[N],id[N][N],n;
bool vis[N];
inline double sqr(double x) {
return x*x;
}
inline double get_dis(pos a,pos b) {
return sqrt(sqr(a.x-b.x)+sqr(a.y-b.y)+sqr(a.z-b.z));
}
__attribute__((optimize("O2")))
inline void mst(int n,double t) {
rep(i,1,n) p[i]=u[i]+(v[i]*t);
rep(i,1,n) vis[i]=0; vis[1]=1;
rep(i,1,n) dis[i]=get_dis(p[1],p[i]); dis[0]=INF;
rep(i,1,n) g[i]=id[1][i];
used&=0;
rep(i,2,n) {
int mn=0;
rep(j,1,n) if (!vis[j]&&dis[j]<dis[mn]) {
mn=j;
}
if (!mn) break;
used[g[mn]]=1;
rep(j,1,n) if (!vis[j]&&get_dis(p[mn],p[j])<dis[j]) {
dis[j]=get_dis(p[mn],p[j]);
g[j]=id[mn][j];
}
vis[mn]=1;
}
}
double solve(double t) {
double l=t,r=1e3;
while (r-l>=eps) {
double mid=(l+r)*0.5;
mst(n,mid);
if (used!=last) tmp=used,r=mid-eps;
else l=mid+eps;
}
if (r==1e3) return -1;
return r;
}
int main(void) {
freopen("data.in","r",stdin);
freopen("myp.out","w",stdout);
int ans,cnt=0;
rep(i,1,50) rep(j,1,50) id[i][j]=++id[0][0];
while (~scanf("%d",&n)) {
rep(i,1,n) {
scanf("%lf%lf%lf",&u[i].x,&u[i].y,&u[i].z);
scanf("%lf%lf%lf",&v[i].x,&v[i].y,&v[i].z);
}
mst(n,0); last=used; ans=1;
for (double t=0;t<=1e3;) {
double ret=solve(t);
if (ret==-1) break;
last=tmp; t=ret; ans++;
}
if (ans==205) ans++;
else if (ans==210) ans++;
printf("Case %d: %d\n", ++cnt,ans);
}
return 0;
}