Description
Solution
我好弱啊,第一档分都没拿到手orz
首先看清题意,这是一个有向图
一个朴素的想法就是我们倍增记录rec[i,j]表示i向上2^k层后包含节点颜色的bitset,m只有1k
注意到这样非常慢,考虑轻重链剖分的做法。我们记录rec[i]为i到链顶节点包含颜色的bitset,对于不满一整条链的我们用线段树查询,这样可以做到一个log的复杂度
假设我们已经找到了c个点的lca,并且求出了它们到lca路径颜色的并。考虑二分答案mid,那么可以建图跑网络流验证是否满足答案恰好为mid
图大概长介样
显然我们可以把一个点拆成mid个点分别连1的容量,那么就变成是否存在匹配数为c*mid的一种匹配方法
这里引入Hall定理:设二分图中G= < V1,V2,E>中 |V1|=m<=|V2|=n,G中存在从V1到V2的完全匹配当且仅当V1中任意k(k=1,2,…,m)个顶点至少与V2中k个顶点是相邻的。
这个定理告诉我们,对于左侧c个点中任意取一个子集R,它们连出去bitset并中1的数量不少于|R|
要满足这个东西,答案就是
min(|S||R|)
min
(
|
S
|
|
R
|
)
,其中R是我们枚举的c个人的集合,S是R联通的点的集合
Code
#include <stdio.h>
#include <string.h>
#include <bitset>
#define rep(i,st,ed) for (int i=st;i<=ed;++i)
typedef std:: bitset <1005> bit;
const int INF=0x7fffffff;
const int N=300005;
const int E=300005;
struct edge {int y,next;} e[E];
bit rec[N<<2],f[N],s[N];
int size[N],bl[N],dep[N],dfn[N],fa[N];
int ls[N],c[N],pos[N],edCnt;
int a[6];
int read() {
int x=0,v=1; char ch=getchar();
for (;ch<'0'||ch>'9';v=(ch=='-')?(-1):(v),ch=getchar());
for (;ch<='9'&&ch>='0';x=x*10+ch-'0',ch=getchar());
return x*v;
}
void add_edge(int x,int y) {
e[++edCnt]=(edge) {y,ls[x]}; ls[x]=edCnt;
}
void dfs1(int now) {
size[now]=1;
for (int i=ls[now];i;i=e[i].next) {
dep[e[i].y]=dep[now]+1;
dfs1(e[i].y); size[now]+=size[e[i].y];
}
}
void dfs2(int now,int up) {
int mx=0; bl[now]=up; pos[now]=++pos[0]; dfn[pos[0]]=now;
f[now][c[now]]=1;
if (now!=up) f[now]|=f[fa[now]];
for (int i=ls[now];i;i=e[i].next) {
if (size[e[i].y]>size[mx]) mx=e[i].y;
}
if (!mx) return ;
dfs2(mx,up);
for (int i=ls[now];i;i=e[i].next) {
if (e[i].y!=mx) dfs2(e[i].y,e[i].y);
}
}
void modify(int now,int tl,int tr,int x) {
if (tl==tr) return (void) (rec[now][c[dfn[tl]]]=1);
int mid=(tl+tr)>>1;
if (x<=mid) modify(now<<1,tl,mid,x);
else modify(now<<1|1,mid+1,tr,x);
rec[now]=rec[now<<1]|rec[now<<1|1];
}
bit query(int now,int tl,int tr,int l,int r) {
if (tl==l&&tr==r) return rec[now];
int mid=(tl+tr)>>1;
if (r<=mid) return query(now<<1,tl,mid,l,r);
if (l>mid) return query(now<<1|1,mid+1,tr,l,r);
bit qx=query(now<<1,tl,mid,l,mid);
bit qy=query(now<<1|1,mid+1,tr,mid+1,r);
return qx|qy;
}
bit get_S(int x,int y) {
bit ret;
while (bl[x]!=bl[y]) {
ret|=f[x];
x=fa[bl[x]];
}
return ret|query(1,1,pos[0],pos[y],pos[x]);
}
int get_lca(int x,int y) {
while (bl[x]!=bl[y]) {
if (dep[bl[x]]<dep[bl[y]]) std:: swap(x,y);
x=fa[bl[x]];
}
if (dep[x]<dep[y]) return x;
return y;
}
int main(void) {
freopen("party.in","r",stdin);
freopen("party.out","w",stdout);
int n=read(),m=read(),q=read();
rep(i,2,n) add_edge(fa[i]=read(),i);
rep(i,1,n) c[i]=read();
dep[1]=1; dfs1(1); dfs2(1,1);
rep(i,1,n) modify(1,1,n,pos[i]);
for (;q--;) {
int c=read();
rep(i,1,c) a[i]=read();
int lca=get_lca(a[1],a[2]),ans=INF;
rep(i,3,c) lca=get_lca(a[i],lca);
rep(i,1,c) s[i]=get_S(a[i],lca);
rep(g,1,(1<<c)-1) {
bit tmp; int cnt=0;
rep(i,0,c-1) if ((1<<i)&g) {
tmp|=s[i+1]; cnt++;
}
int xx=tmp.count();
ans=std:: min(ans,(int)(xx/cnt));
}
printf("%d\n", ans*c);
}
return 0;
}