bzoj5404 party 树链剖分+bitset

25 篇文章 0 订阅
24 篇文章 0 订阅

Description


这里写图片描述
这里写图片描述

Solution


我好弱啊,第一档分都没拿到手orz

首先看清题意,这是一个有向图
一个朴素的想法就是我们倍增记录rec[i,j]表示i向上2^k层后包含节点颜色的bitset,m只有1k
注意到这样非常慢,考虑轻重链剖分的做法。我们记录rec[i]为i到链顶节点包含颜色的bitset,对于不满一整条链的我们用线段树查询,这样可以做到一个log的复杂度

假设我们已经找到了c个点的lca,并且求出了它们到lca路径颜色的并。考虑二分答案mid,那么可以建图跑网络流验证是否满足答案恰好为mid
这里写图片描述
图大概长介样

显然我们可以把一个点拆成mid个点分别连1的容量,那么就变成是否存在匹配数为c*mid的一种匹配方法
这里引入Hall定理:设二分图中G= < V1,V2,E>中 |V1|=m<=|V2|=n,G中存在从V1到V2的完全匹配当且仅当V1中任意k(k=1,2,…,m)个顶点至少与V2中k个顶点是相邻的。

这个定理告诉我们,对于左侧c个点中任意取一个子集R,它们连出去bitset并中1的数量不少于|R|
要满足这个东西,答案就是 min(|S||R|) min ( | S | | R | ) ,其中R是我们枚举的c个人的集合,S是R联通的点的集合

Code


#include <stdio.h>
#include <string.h>
#include <bitset>
#define rep(i,st,ed) for (int i=st;i<=ed;++i)

typedef std:: bitset <1005> bit;
const int INF=0x7fffffff;
const int N=300005;
const int E=300005;

struct edge {int y,next;} e[E];

bit rec[N<<2],f[N],s[N];

int size[N],bl[N],dep[N],dfn[N],fa[N];
int ls[N],c[N],pos[N],edCnt;
int a[6];

int read() {
    int x=0,v=1; char ch=getchar();
    for (;ch<'0'||ch>'9';v=(ch=='-')?(-1):(v),ch=getchar());
    for (;ch<='9'&&ch>='0';x=x*10+ch-'0',ch=getchar());
    return x*v;
}

void add_edge(int x,int y) {
    e[++edCnt]=(edge) {y,ls[x]}; ls[x]=edCnt;
}

void dfs1(int now) {
    size[now]=1;
    for (int i=ls[now];i;i=e[i].next) {
        dep[e[i].y]=dep[now]+1;
        dfs1(e[i].y); size[now]+=size[e[i].y];
    }
}

void dfs2(int now,int up) {
    int mx=0; bl[now]=up; pos[now]=++pos[0]; dfn[pos[0]]=now;
    f[now][c[now]]=1;
    if (now!=up) f[now]|=f[fa[now]];
    for (int i=ls[now];i;i=e[i].next) {
        if (size[e[i].y]>size[mx]) mx=e[i].y;
    }
    if (!mx) return ;
    dfs2(mx,up);
    for (int i=ls[now];i;i=e[i].next) {
        if (e[i].y!=mx) dfs2(e[i].y,e[i].y);
    }
}

void modify(int now,int tl,int tr,int x) {
    if (tl==tr) return (void) (rec[now][c[dfn[tl]]]=1);
    int mid=(tl+tr)>>1;
    if (x<=mid) modify(now<<1,tl,mid,x);
    else modify(now<<1|1,mid+1,tr,x);
    rec[now]=rec[now<<1]|rec[now<<1|1];
}

bit query(int now,int tl,int tr,int l,int r) {
    if (tl==l&&tr==r) return rec[now];
    int mid=(tl+tr)>>1;
    if (r<=mid) return query(now<<1,tl,mid,l,r);
    if (l>mid) return query(now<<1|1,mid+1,tr,l,r);
    bit qx=query(now<<1,tl,mid,l,mid);
    bit qy=query(now<<1|1,mid+1,tr,mid+1,r);
    return qx|qy;
}

bit get_S(int x,int y) {
    bit ret;
    while (bl[x]!=bl[y]) {
        ret|=f[x];
        x=fa[bl[x]];
    }
    return ret|query(1,1,pos[0],pos[y],pos[x]);
}

int get_lca(int x,int y) {
    while (bl[x]!=bl[y]) {
        if (dep[bl[x]]<dep[bl[y]]) std:: swap(x,y);
        x=fa[bl[x]];
    }
    if (dep[x]<dep[y]) return x;
    return y;
}

int main(void) {
    freopen("party.in","r",stdin);
    freopen("party.out","w",stdout);
    int n=read(),m=read(),q=read();
    rep(i,2,n) add_edge(fa[i]=read(),i);
    rep(i,1,n) c[i]=read();
    dep[1]=1; dfs1(1); dfs2(1,1);
    rep(i,1,n) modify(1,1,n,pos[i]);
    for (;q--;) {
        int c=read();
        rep(i,1,c) a[i]=read();
        int lca=get_lca(a[1],a[2]),ans=INF;
        rep(i,3,c) lca=get_lca(a[i],lca);
        rep(i,1,c) s[i]=get_S(a[i],lca);
        rep(g,1,(1<<c)-1) {
            bit tmp; int cnt=0;
            rep(i,0,c-1) if ((1<<i)&g) {
                tmp|=s[i+1]; cnt++;
            }
            int xx=tmp.count();
            ans=std:: min(ans,(int)(xx/cnt));
        }
        printf("%d\n", ans*c);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值