bzoj4890 [Tjoi2017]城市 树形dp

40 篇文章 0 订阅

Description


从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作。这个地区一共有n座城市,n-1条高速公路,保证了任意两运城市之间都可以通过高速公路相互可达,但是通过一条高速公路需要收取一定的交通费用。小明对这个地区深入研究后,觉得这个地区的交通费用太贵。

小明想彻底改造这个地区,但是由于上司给他的资源有限,因而小明现在只能对一条高速公路进行改造,改造的方式就是去掉一条高速公路,并且重新修建一条一样的高速公路(即交通费用一样),使得这个地区的两个城市之间的最大交通费用最小(即使得交通费用最大的两座城市之间的交通费用最小),并且保证修建完之后任意两座城市相互可达。如果你是小明,你怎么解决这个问题?

1 <= u,v <= n,1<= d <= 2000

对于30%的数据,1<=n<500
对于100%的数据,1<=n<=5000

Solution


首先删掉的一定是直径上的边
我们枚举删一条边,然后新的直径有这么几种情况:

  1. 两棵树各自直径取max
  2. 新加边连向两棵树的中心

这里中心的定义是:以这个点为起点的最长路径最短的点
然后两次dp就可以了

Code


#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#define rep(i,st,ed) for (int i=st;i<=ed;++i)

const int INF=0x3f3f3f3f;
const int N=5005;

struct edge {int x,y,w,next;} e[N*2];

int f1[N],f2[N],b1[N],b2[N];
int ls[N],len[2],edCnt=1;
int res,mx,now,opt;

std:: vector <int> vec,rec;

bool used[N*2];

int read() {
	int x=0,v=1; char ch=getchar();
	for (;ch<'0'||ch>'9';v=(ch=='-')?(-1):(v),ch=getchar());
	for (;ch<='9'&&ch>='0';x=x*10+ch-'0',ch=getchar());
	return x*v;
}

void add_edge(int x,int y,int w) {
	e[++edCnt]=(edge) {x,y,w,ls[x]}; ls[x]=edCnt;
	e[++edCnt]=(edge) {y,x,w,ls[y]}; ls[y]=edCnt;
}

void upd(int &x,int v) {
	(x<v)?(x=v):0;
}

void dfs1(int x,int fa) {
	f1[x]=f2[x]=0;
	for (int i=ls[x];i;i=e[i].next) {
		if (e[i].y==fa||used[i]) continue;
		dfs1(e[i].y,x);
		if (f1[e[i].y]+e[i].w>f1[x]) {
			f2[x]=f1[x]; b2[x]=b1[x];
			f1[x]=f1[e[i].y]+e[i].w; b1[x]=e[i].y;
		} else if (f1[e[i].y]+e[i].w>f2[x]) {
			f2[x]=f1[e[i].y]+e[i].w; b2[x]=e[i].y;
		}
	}
	upd(now,f1[x]+f2[x]);
}

void dfs2(int x,int fa) {
	len[opt]=std:: min(len[opt],f1[x]);
	for (int i=ls[x];i;i=e[i].next) {
		if (e[i].y==fa||used[i]) continue;
		int tmp;
		if (b1[x]==e[i].y) tmp=f2[x]+e[i].w;
		else tmp=f1[x]+e[i].w;
		if (tmp>f1[e[i].y]) {
			f2[e[i].y]=f1[e[i].y]; b2[e[i].y]=b1[e[i].y];
			f1[e[i].y]=tmp; b1[e[i].y]=x;
		} else if (tmp>f2[e[i].y]) {
			f2[e[i].y]=tmp; b2[e[i].y]=x;
		}
		dfs2(e[i].y,x);
	}
}

int dfs(int x,int fa,int dis) {
	if (dis>mx) mx=dis,res=x,rec=vec;
	for (int i=ls[x];i;i=e[i].next) {
		if (e[i].y==fa||used[i]) continue;
		vec.push_back(i);
		dfs(e[i].y,x,dis+e[i].w);
		vec.pop_back();
	}
}

void clr(int n) {
	rep(i,0,n) f1[i]=f2[i]=0;
}

int main(void) {
	freopen("data.in","r",stdin);
	int n=read(),ans=INF;
	rep(i,2,n) {
		int x=read(),y=read(),w=read();
		add_edge(x,y,w);
	}
	res=mx=0; dfs(1,0,0);
	mx=0; dfs(res,0,0);
	for (int i=0;i<rec.size();++i) {
		used[rec[i]]=used[rec[i]^1]=1;
		int x=e[rec[i]].x,y=e[rec[i]].y;
		now=0; len[0]=len[1]=INF;
		opt=0; dfs1(x,y); dfs2(x,y);
		opt=1; dfs1(y,x); dfs2(y,x);
		upd(now,e[rec[i]].w+len[0]+len[1]);

		ans=std:: min(ans,now);
		used[rec[i]]=used[rec[i]^1]=0;
	}
	printf("%d\n", ans);
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 到 $(n,n)$,每只能往右或往下,每个格子只能经过一,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值