bzoj2560 串珠子 状压dp+FWT

21 篇文章 0 订阅
9 篇文章 0 订阅

Description


铭铭有n个十分漂亮的珠子和若干根颜色不同的绳子。现在铭铭想用绳子把所有的珠子连接成一个整体。
  现在已知所有珠子互不相同,用整数1到n编号。对于第i个珠子和第j个珠子,可以选择不用绳子连接,或者在ci,j根不同颜色的绳子中选择一根将它们连接。如果把珠子看作点,把绳子看作边,将所有珠子连成一个整体即为所有点构成一个连通图。特别地,珠子不能和自己连接。
  铭铭希望知道总共有多少种不同的方案将所有珠子连成一个整体。由于答案可能很大,因此只需输出答案对1000000007取模的结果。

Solution


f S f_S fS表示点集为S时的方案数,容斥一下可以得到 f S = g S − ∑ T ⊂ S f T ⋅ g S \ T f_S=g_S-\sum\limits_{T\subset S}{f_T\cdot g_{S\backslash T}} fS=gSTSfTgS\T,其中 g S g_S gS表示集合为S的导出子图,所有边权+1的乘积
直接做是 O ( 3 n ) O(3^n) O(3n)的,为了不重复我们要保证 S S S T T T的最低非0位相等
在这里插入图片描述
考虑一个比较牛逼的做法,观察到这本质上是一个子集卷积,难点在于解决最低非0位相等的情况
注意到我们钦定任意一位相等都是可以的,观察每一个子集的贡献可以发现 c S ⋅ f S = g S − ∑ T ⊂ S f T ⋅ c T ⋅ g S \ T c_S\cdot f_S=g_S-\sum\limits_{T\subset S}{f_{T}\cdot c_T}\cdot g_{S\backslash T} cSfS=gSTSfTcTgS\T
其中 c T c_T cT表示集合T中1的数量
那么我们就可以做 O ( n 2 ⋅ 2 n ) O(n^2\cdot 2^n) O(n22n)的子集卷积,把 f S ⋅ c S f_S\cdot c_S fScS带进去做就可以了

写出来被卡常了qaq

Code


#include <stdio.h>
#include <string.h>
#include <math.h>
#define rep(i,st,ed) for (register int i=st;i<=ed;++i)
#define fill(x,t) memset(x,t,sizeof(x))
#define lowbit(x) (x&-x)

typedef long long LL;
const int MOD=1000000007;
const int ny2=(MOD+1)/2;

int f[21][1049595],g[21][1049595];
int p[1049595],fac[55];
int c[1049595];

void upd(int &x,int v) {
	x+=v; (x>=MOD)?(x-=MOD):0;
}

LL ksm(int x,int dep) {
	int ret=1; x=(x%MOD+MOD)%MOD;
	for (;dep;dep>>=1) {
		(dep&1)?(ret=1LL*ret*x%MOD):0;
		x=1LL*x*x%MOD;
	}
	return ret;
}

void FWT(int *a,int n,int f) {
	for (register int i=1;i<n;i<<=1) {
		for (register int j=0;j<n;j+=(i<<1)) {
			for (register int k=0;k<i;++k) {
				if (f==1) upd(a[j+k+i],a[j+k]);
				else upd(a[j+k+i],MOD-a[j+k]);
			}
		}
	}
}


int main(void) {
	freopen("union.in","r",stdin);
	freopen("union.out","w",stdout);
	int n; scanf("%d",&n);
	int lim=(1<<n)-1;
	rep(i,0,lim) p[i]=1,c[i]=c[i>>1]+(i&1);
	rep(i,1,n) rep(j,0,lim) f[i][j]=1;
	rep(i,1,n) rep(j,i+1,n) {
		int w,x=i-1,y=j-1; scanf("%d",&w);
		f[x+1][1<<y]=1LL*f[x+1][1<<y]*(w+1)%MOD;
		f[y+1][1<<x]=1LL*f[y+1][1<<x]*(w+1)%MOD;
	}
	rep(i,1,n) rep(j,1,lim) {
		int x=lowbit(j);
		f[i][j]=1LL*f[i][j^x]*f[i][x]%MOD;
	}
	p[0]=1;
	rep(i,1,lim) {
		int x=lowbit(i);
		p[i]=1LL*p[i^x]*f[1+(int)log2(x)][i^x]%MOD;
		g[c[i]][i]=p[i];
	}
	fill(f,0);
	rep(i,1,lim) if (c[i]==1) f[1][i]=g[1][i]=1;
	FWT(f[1],lim+1,1);
	rep(i,1,n) FWT(g[i],lim+1,1);
	rep(i,2,n) {
		rep(j,1,i-1) rep(k,0,lim) upd(f[i][k],1LL*f[j][k]*g[i-j][k]%MOD);
		FWT(f[i],lim+1,-1);
		rep(k,0,lim) {
			if (c[k]!=i) {
				f[i][k]=0;
				continue;
			}
			f[i][k]=1LL*p[k]*c[k]%MOD-f[i][k];
			(f[i][k]<0)?(f[i][k]+=MOD):0;
		}
		if (i!=n) FWT(f[i],lim+1,1);
	}
	printf("%lld\n", 1LL*f[n][lim]*ksm(n,MOD-2)%MOD);
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值