Description
给定一棵n个节点的树和m次形如(l,r,x)询问,意义为:编号为l至r的点中到编号为x的点的距离的最小值
n
,
m
≤
1
0
5
n,m\le10^5
n,m≤105
Solution
考虑动态点分治,查询的时候在点分树上爬然后线段树查就可以了
这样做是对的是因为我们只会把答案算大而不会算小,那么最小值就一定会被恰好统计到
loj挂了全是system error,裙里面好像也没人在意这个东西。。。
这里只测了第10个点没问题就算a了吧。。
Code
#include <stdio.h>
#include <string.h>
#include <algorithm>
#define rep(i,st,ed) for (int i=st;i<=ed;++i)
const int INF=0x3f3f3f3f;
const int N=200005;
struct treeNode {
int l,r,min;
} t[N*205];
struct edge {
int y,w,next;
} e[N*2];
int rec[21][N],wh[N],lg[N],rt[N],ls[N],edCnt,tot,sum,cnt,R,n;
int dep[N],dis[N],size[N],fa[N],mx[N];
bool del[N];
int read() {
int x=0,v=1; char ch=getchar();
for (;ch<'0'||ch>'9';v=(ch=='-')?(-1):(v),ch=getchar());
for (;ch<='9'&&ch>='0';x=x*10+ch-'0',ch=getchar());
return x*v;
}
void add_edge(int x,int y,int w) {
e[++edCnt]=(edge) {y,w,ls[x]}; ls[x]=edCnt;
e[++edCnt]=(edge) {x,w,ls[y]}; ls[y]=edCnt;
}
void modify(int &now,int tl,int tr,int x,int v) {
if (!now) t[now=++tot].min=INF;
t[now].min=std:: min(t[now].min,v);
if (tl==tr) return ;
int mid=(tl+tr)>>1;
if (x<=mid) modify(t[now].l,tl,mid,x,v);
else modify(t[now].r,mid+1,tr,x,v);
}
int query(int now,int tl,int tr,int l,int r) {
if (!now||r<l) return INF;
if (tl>=l&&tr<=r) return t[now].min;
int mid=(tl+tr)>>1,qx=INF,qy=INF;
if (l<=mid) qx=query(t[now].l,tl,mid,l,r);
if (mid+1<=r) qy=query(t[now].r,mid+1,tr,l,r);
return std:: min(qx,qy);
}
int get_lca(int x,int y) {
x=wh[x],y=wh[y];
if (x>y) std:: swap(x,y);
int w=lg[y-x+1];
x=rec[w][x],y=rec[w][y-(1<<w)+1];
return (dep[x]<dep[y])?x:y;
}
int get_dis(int x,int y) {
return dis[x]+dis[y]-2*dis[get_lca(x,y)];
}
void dfs1(int x,int fa) {
rec[0][++cnt]=x; wh[x]=cnt;
for (int i=ls[x];i;i=e[i].next) {
if (e[i].y==fa) continue;
dep[e[i].y]=dep[x]+1;
dis[e[i].y]=dis[x]+e[i].w;
dfs1(e[i].y,x);
rec[0][++cnt]=x;
}
}
void dfs2(int x,int fa) {
size[x]=1; mx[x]=0;
for (int i=ls[x];i;i=e[i].next) {
if (e[i].y==fa||del[e[i].y]) continue;
dfs2(e[i].y,x); size[x]+=size[e[i].y];
mx[x]=std:: max(mx[x],size[e[i].y]);
}
mx[x]=std:: max(mx[x],sum-mx[x]);
if (mx[x]<mx[R]) R=x;
}
void build(int x) {
del[x]=1;
for (int i=ls[x];i;i=e[i].next) {
if (e[i].y==fa[x]||del[e[i].y]) continue;
R=0; sum=size[e[i].y];
dfs2(e[i].y,x);
fa[R]=x; build(R);
}
}
void change(int x) {
for (int now=x;now;) {
modify(rt[now],1,n,x,get_dis(x,now));
now=fa[now];
}
}
void solve(int x,int l,int r) {
int ans=INF;
for (int now=x;now;) {
int res=query(rt[now],1,n,l,r);
ans=std:: min(ans,res+get_dis(x,now));
now=fa[now];
}
printf("%d\n", ans);
}
int main(void) {
freopen("data.in","r",stdin);
freopen("myp.out","w",stdout);
n=read();
rep(i,2,n) {
int x=read(),y=read(),w=read();
add_edge(x,y,w);
}
dfs1(dep[1]=1,0);
rep(i,2,cnt) lg[i]=lg[i>>1]+1;
rep(j,1,lg[cnt]) {
rep(i,1,cnt-(1<<j)) {
if (dep[rec[j-1][i]]>dep[rec[j-1][i+(1<<j-1)]]) {
rec[j][i]=rec[j-1][i+(1<<j-1)];
} else rec[j][i]=rec[j-1][i];
}
}
mx[R=0]=INF; sum=n;
dfs2(1,0);
int root=R;
build(R);
rep(i,1,n) change(i);
for (int T=read();T--;) {
int l=read(),r=read(),x=read();
solve(x,l,r);
}
return 0;
}